6,609 research outputs found

    Relativistic effects in two-particle emission for electron and neutrino reactions

    Get PDF
    Two-particle two-hole contributions to electroweak response functions are computed in a fully relativistic Fermi gas, assuming that the electroweak current matrix elements are independent of the kinematics. We analyze the genuine kinematical and relativistic effects before including a realistic meson-exchange current (MEC) operator. This allows one to study the mathematical properties of the non-trivial seven-dimensional integrals appearing in the calculation and to design an optimal numerical procedure to reduce the computation time. This is required for practical applications to CC neutrino scattering experiments, where an additional integral over the neutrino flux is performed. Finally we examine the viability of this model to compute the electroweak 2p-2h response functions.Comment: Major revision (shortened). 22 pages, 18 figure

    2p-2h excitations in neutrino scattering: angular distribution and frozen approximation

    Full text link
    We study the phase-space dependence of 2p-2h excitations in neutrino scattering using the relativistic Fermi gas model. We follow a similar approach to other authors, but focusing in the phase-space properties, comparing with the non-relativistic model. A careful mathematical analysis of the angular distribution function for the outgoing nucleons is performed. Our goals are to optimize the CPU time of the 7D integral to compute the hadron tensor in neutrino scattering, and to conciliate the different relativistic and non relativistic models by describing general properties independently of the two-body current. For some emission angles the angular distribution becomes infinite in the Lab system, and we derive a method to integrate analytically around the divergence. Our results show that the frozen approximation, obtained by neglecting the momenta of the two initial nucleons inside the integral of the hadron tensor, reproduces fairly the exact response functions for constant current matrix elements.Comment: 8 pages, 4 figures. Contribution to 16th International Workshop on Neutrino Factories and Future Neutrino Beam Facilities, 25-30 August, 2014. Held at University of Glasgow, United Kingdo

    The frozen nucleon approximation in two-particle two-hole response functions

    Get PDF
    We present a fast and efficient method to compute the inclusive two-particle two-hole (2p-2h) electroweak responses in the neutrino and electron quasielastic inclusive cross sections. The method is based on two approximations. The first neglects the motion of the two initial nucleons below the Fermi momentum, which are considered to be at rest. This approximation, which is reasonable for high values of the momentum transfer, turns out also to be quite good for moderate values of the momentum transfer q≳kFq\gtrsim k_F. The second approximation involves using in the "frozen" meson-exchange currents (MEC) an effective Δ\Delta-propagator averaged over the Fermi sea. Within the resulting "frozen nucleon approximation", the inclusive 2p-2h responses are accurately calculated with only a one-dimensional integral over the emission angle of one of the final nucleons, thus drastically simplifying the calculation and reducing the computational time. The latter makes this method especially well-suited for implementation in Monte Carlo neutrino event generators.Comment: 8 pages, 5 figures and 1 tabl

    Two-nucleon emission in neutrino and electron scattering from nuclei: the modified convolution approximation

    Full text link
    The theoretical formalism of inclusive lepton-nucleus scattering in the two-nucleon emission channel is discussed in the context of a simplified approach, the modified convolution approximation. This allows one to write the 2p2h responses of the relativistic Fermi gas as a folding integral of two 1p1h responses with the energies and momenta transferred to each nucleon. The idea behind this method is to introduce different average momenta for the two initial nucleons in the matrix elements of the two-body current, with the innovation that they depend on the transferred energies and momenta. This method treats exactly the two-body phase space kinematics, and reduces the formulae of the response functions from seven-dimensional integrals over momenta to much simpler three-dimensional ones. The applicability of the method is checked by comparing with the full results within a model of electroweak meson-exchange currents. The predictions are accurate enough, especially in the low-energy threshold region where the average momentum approximation works the best.Comment: 35 pages, 13 figure

    Emission of neutron-proton and proton-proton pairs in electron scattering induced by meson-exchange currents

    Get PDF
    We use a relativistic model of meson-exchange currents to compute the proton-neutron and proton-proton yields in (e,e′)(e,e') scattering from 12^{12}C in the 2p-2h channel. We compute the response functions and cross section with the relativistic Fermi gas model for a range of kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ\Delta isobar current. We also analyze the effect of the exchange contribution and show that the direct/exchange interference strongly affects the determination of the np/pp ratio.Comment: 5 pages, 6 figure

    Nuclear dependence of the 2p2h electroweak response in the Relativistic Fermi Gas model

    Get PDF
    We present the results of a recent study of meson-exchange two-body currents in lepton-nucleus inclusive scattering at various kinematics and for different nuclei within the Relativistic Fermi Gas model. We show that the associated nuclear response functions at their peaks scale as AkF2A k_F^2, for Fermi momentum kFk_F going from 200 to 300 MeV/c and momentum transfer qq from 2kF2k_F to 2 GeV/c. This behavior is different from what is found for the quasielastic response, which scales as A/kFA/k_F. This result can be valuable in the analyses of long-baseline neutrino oscillation experiments, which need to implement these nuclear effects in Monte Carlo simulations for different kinematics and nuclear targets.Comment: 11 pages, 6 figures, Proccedings of the Workshop "Advanced Aspects in Nuclear Structure and Reactions at Different Energy Scales", 25-28 April 2017, Arbanasi, Bulgari

    Wire Harness Assembly Process Supported by Collaborative Robots: Literature Review and Call for R&D

    Get PDF
    The wire harness assembly process is a complicated manufacturing activity, which is becoming more complex because of the evolving nature of mechatronic and electronic products that require more connectors, sensors, controllers, communication networking, etc. Furthermore, the demand for wire harnesses continues to grow in all industries worldwide as the majority of equipment, appliances, machinery, vehicles, etc., are becoming "smart" (i.e., more mechatronic or electronic). Moreover, most of the wire harness assembly process tasks are done manually, and most of these are considered non-ergonomic for human assembly workers. Hence, the wire harness manufacturing industry is faced with the challenge of increasing productivity while improving the occupational health of its human assembly workers. The purpose of this paper is to conduct a literature review exploring the state of the use of collaborative robots in the wire harness assembly process due to their potential to reduce current occupational health problems for human assembly workers and increase the throughput of wire harness assembly lines, and to provide main findings, discussion, and further research directions for collaborative robotics in this application domain. Eleven papers were found in the scientific literature. All papers demonstrated the potential of collaborative robots to improve the productivity of wire harness assembly lines, and two of these in particular on the ergonomics of the wire harness assembly process. None of the papers reviewed presented a cost-benefit or a cycle time analysis to qualitatively and/or quantitatively measure the impact of the incorporation of collaborative robots in the wire harness assembly process. This represents an important area of opportunity for research with relevance to industry. Three papers remark on the importance of the integration of computer vision systems into a collaborative wire harness assembly process to make this more versatile as many types of wire harnesses exist. The literature review findings call for further research and technological developments in support of the wire harness manufacturing industry and its workers in four main categories: (i) Collaborative Robotics and Grippers, (ii) Ergonomics, (iii) Computer Vision Systems, and (iv) Implementation Methodologies

    Density dependence of 2p-2h meson-exchange currents

    Get PDF
    We analyze the density dependence of the contribution of meson-exchange currents to the lepton-nucleus inclusive cross section in the two-particle two-hole channel. The model is based on the Relativistic Fermi Gas, where each nucleus is characterized by its Fermi momentum kFk_F. We find that the 2p-2h nuclear response functions at their peaks scale as AkF2A k_F^2 for Fermi momentum going from 200 to 300 MeV/c and momentum transfer qq from 2kF2k_F to 2 GeV/c. This behavior is different from what is found for the quasielastic response, which scales as A/kFA/k_F. Additionally, the deep scaling region is also discussed and there the usual scaling behavior is found to be preferable.Comment: 9 pages, 8 figure

    Emission of neutron-proton and proton-proton pairs in neutrino scattering

    Get PDF
    We use a recently developed model of relativistic meson-exchange currents to compute the neutron-proton and proton-proton yields in (νμ,μ−)(\nu_\mu,\mu^-) scattering from 12^{12}C in the 2p-2h channel. We compute the response functions and cross sections with the relativistic Fermi gas model for different kinematics from intermediate to high momentum transfers. We find a large contribution of neutron-proton configurations in the initial state, as compared to proton-proton pairs. In the case of charge-changing neutrino scattering the 2p-2h cross section of proton-proton emission ({\it i.e.,} np in the initial state) is much larger than for neutron-proton emission ({\it i.e.,} two neutrons in the initial state) by a (ω,q)(\omega,q)-dependent factor. The different emission probabilities of distinct species of nucleon pairs are produced in our model only by meson-exchange currents, mainly by the Δ\Delta isobar current. We also analyze other effects including exchange contributions and the effect of the axial and vector currents.Comment: 9 pages and 8 figure

    Neutrino-Oxygen CC0Ï€\pi scattering in the SuSAv2-MEC model

    Get PDF
    We present the predictions of the SuSAv2-MEC model for the double differential charged-current muonic neutrino (antineutrino) cross section on water for the T2K neutrino (antineutrino) beam. We validate our model by comparing with the available inclusive electron scattering data on oxygen and compare our predictions with the recent T2K νμ\nu_\mu-16^{16}O data, finding good agreement at all kinematics. We show that the results are very similar to those obtained for νμ−12\nu_\mu-^{12}C scattering, except at low energies, and we comment on the origin of this difference. A factorized spectral function model of 16^{16}O is also included for purposes of comparison.Comment: 28 pages, 10 figures, JLAB-THY-17-2586. Version 2 accepted for publication in Journal of Physics G: Nucl. Part. Phy
    • …
    corecore