1,788 research outputs found

    Determination of AGC capacity requirement and regulation strategies considering penalties of tie-line power flow deviations

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Numerical simulation of air-he shock tube flow with equilibrium air model

    Get PDF
    2012-2013 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Application of a valveless impedance pump in a liquid cooling system

    Get PDF
    2012-2013 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Survey on operating reserve procurement and pricing in deregulated electricity market environment

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Procurement and pricing of operating reserves based on the Peak-Load Pricing Theory

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Numerical simulations of nonequilibrium flows over rounded models at reentry speeds

    Get PDF
    2012-2013 > Academic research: refereed > Refereed conference paperOther VersionPublishe

    Ultrasonic-aided fabrication of gold nanofluids

    Get PDF
    A novel ultrasonic-aided one-step method for the fabrication of gold nanofluids is proposed in this study. Both spherical- and plate-shaped gold nanoparticles (GNPs) in the size range of 10-300 nm are synthesized. Subsequent purification produces well-controlled nanofluids with known solid and liquid contents. The morphology and properties of the nanoparticle and nanofluids are characterized by transmission electron microscopy, scanning electron microscope, energy dispersive X-ray spectroscope, X-ray diffraction spectroscopy, and dynamic light scattering, as well as effective thermal conductivities. The ultrasonication technique is found to be a very powerful tool in engineering the size and shape of GNPs. Subsequent property measurement shows that both particle size and particle shape play significant roles in determining the effective thermal conductivity. A large increase in effective thermal conductivity can be achieved (approximately 65%) for gold nanofluids using plate-shaped particles under low particle concentrations (i.e.764 μM/L)

    Long-term ambient hydrocarbons exposure and incidence of ischemic stroke.

    Full text link
    Exposure to air pollutants is known to have adverse effects on human health; however, little is known about the association between hydrocarbons in air and an ischemic stroke (IS) event. We investigated whether long-term exposure to airborne hydrocarbons, including volatile organic compounds, increased IS risk. This retrospective cohort study included 283,666 people aged 40 years or older in Taiwan. Cox proportional hazards regression analysis was used to fit single- and multiple-pollutant models for two targeted pollutants, total hydrocarbons (THC) and nonmethane hydrocarbons (NMHC), and estimated the risk of IS. Before controlling for multiple pollutants, hazard ratios (HRs) of IS with 95% confidence intervals for the overall population were 2.69 (2.64-2.74) at 0.16-ppm increase in THC and 1.62 (1.59-1.66) at 0.11-ppm increase in NMHC. For the multiple-pollutant models controlling for PM2.5, the adjusted HR was 3.64 (3.56-3.72) for THC and 2.21 (2.16-2.26) for NMHC. Our findings suggest that long-term exposure to THC and NMHC may be a risk factor for IS development

    Tracing magnetism and pairing in FeTe-based systems

    Full text link
    In order to examine the interplay between magnetism and superconductivity, we monitor the non- superconducting chalcogenide FeTe and follow its transitions under insertion of oxygen, doping with Se and vacancies of Fe using spin-polarized band structure methods (LSDA with GGA) starting from the collinear and bicollinear magnetic arrangements. We use a supercell of Fe8Te8 as our starting point so that it can capture local changes in magnetic moments. The calculated values of magnetic moments agree well with available experimental data while oxygen insertions lead to significant changes in the bicollinear or collinear magnetic moments. The total energies of these systems indicate that the collinear-derived structure is the more favorable one prior to a possible superconducting transition. Using a 8-site Betts-cluster-based lattice and the Hubbard model, we show why this structure favors electron or hole pairing and provides clues to a common understanding of charge and spin pairing in the cuprates, pnictides and chalcogenides
    corecore