7 research outputs found

    Skp is a multivalent chaperone of outer membrane proteins

    Get PDF
    The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry–mass spectrometry (IMS–MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation

    The Periplasmic Chaperones Skp and SurA

    No full text
    The periplasm of Gram-negative bacteria contains a specialized chaperone network that facilitates the transport of unfolded membrane proteins to the outer membrane as its primary functional role. The network, involving the chaperones Skp and SurA as key players and potentially additional chaperones, is indispensable for the survival of the cell. Structural descriptions of the apo forms of these molecular chaperones were initially provided by X-ray crystallography. Subsequently, a combination of experimental biophysical methods including solution NMR spectroscopy provided a detailed understanding of full-length chaperone-client complexes . The data showed that conformational changes and dynamic re-organization of the chaperones upon client binding, as well as client dynamics on the chaperone surface are crucial for function. This chapter gives an overview of the structure-function relationship of the dynamic conformational rearrangements that regulate the functional cycles of the periplasmic molecular chaperones Skp and SurA
    corecore