21 research outputs found

    Performance of adenosine “stress-only” perfusion MRI in patients without a history of myocardial infarction: a clinical outcome study

    Get PDF
    To assess the diagnostic value of adenosine “stress-only” myocardial perfusion MR for ischemia detection as an indicator for coronary angiography in patients without a prior myocardial infarction and a necessity to exclude ischemia. Adenosine perfusion MRI was performed at 1.5 T in 139 patients with a suspicion of ischemia and no prior myocardial infarction. After 3 min of adenosine infusion a perfusion sequence was started. Patients with a perfusion defect were referred to coronary angiography (CAG). Patients with a normal perfusion were enrolled in follow-up. Fourteen out of 139 patients (10.1%) had a perfusion defect indicative of ischemia. These patients underwent a coronary angiogram, which showed complete agreement with the perfusion images. 125 patients with a normal myocardial perfusion entered follow-up (median 672 days, range 333–1287 days). In the first year of follow-up one Major Adverse Coronary Event (MACE) occurred and one patient had new onset chest pain with a confirmed coronary stenosis. Reaching a negative predictive value for MACE of 99.2% and for any coronary event of 98.4%. At 2 year follow-up no additional MACE occurred. Sensitivity of adenosine perfusion MR for MACE is 93.3% and specificity and positive predictive value are 100%. Adenosine myocardial perfusion MR for the detection of myocardial ischemia in a “stress-only” protocol in patients without prior myocardial infarctions, has a high diagnostic accuracy. This fast examination can play an important role in the evaluation of patients without prior myocardial infarctions and a necessity to exclude ischemia

    Impact of impaired fractional flow reserve after coronary interventions on outcomes: a systematic review and meta-analysis

    Full text link
    BACKGROUND: FFR is routinely used to guide percutaneous coronary interventions (PCI). Visual assessment of the angiographic result after PCI has limited efficacy. Even when the angiographic result seems satisfactory FFR after a PCI might be useful for identifying patients with a suboptimal interventional result and higher risk for poor clinical outcome who might benefit from additional procedures. The aim of this meta-analysis was to investigate available data of studies that examined clinical outcomes of patients with impaired vs. satisfactory fractional flow reserve (FFR) after percutaneous coronary interventions (PCI). METHODS: This meta-analysis was carried out according to the Cochrane Handbook for Systematic Reviews. The Mantel-Haenszel method using the fixed-effect meta-analysis model was used for combining the results. Studies were identified by searching the literature through mid-January, 2016, using the following search terms: fractional flow reserve, coronary circulation, after, percutaneous coronary intervention, balloon angioplasty, stent implantation, and stenting. Primary endpoint was the rate of major adverse cardiac events (MACE). Secondary endpoints included rates of death, myocardial infarction (MI), repeated revascularisation. RESULTS: Eight relevant studies were found including a total of 1337 patients. Of those, 492 (36.8 %) had an impaired FFR after PCI, and 853 (63.2 %) had a satisfactory FFR after PCI. Odds ratios indicated that a low FFR following PCI was associated with an impaired outcome: major adverse cardiac events (MACE, OR: 4.95, 95 % confidence interval [CI]: 3.39–7.22, p <0.001); death (OR: 3.23, 95 % CI: 1.19–8.76, p = 0.022); myocardial infarction (OR: 13.83, 95 % CI: 4.75–40.24, p <0.0001) and repeated revascularisation (OR: 4.42, 95 % CI: 2.73–7.15, p <0.0001). CONCLUSIONS: Compared to a satisfactory FFR, a persistently low FFR following PCI is associated with a worse clinical outcome. Prospective studies are needed to identify underlying causes, determine an optimal threshold for post-PCI FFR, and clarify whether simple additional procedures can influence the post-PCI FFR and clinical outcome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12872-016-0355-7) contains supplementary material, which is available to authorized users

    Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>Evaluation of the diagnostic accuracy of stress perfusion cardiovascular magnetic resonance for the diagnosis of significant obstructive coronary artery disease (CAD) through meta-analysis of the available data.</p> <p>Methodology</p> <p>Original articles in any language published before July 2009 were selected from available databases (MEDLINE, Cochrane Library and BioMedCentral) using the combined search terms of magnetic resonance, perfusion, and coronary angiography; with the exploded term coronary artery disease. Statistical analysis was only performed on studies that: (1) used a [greater than or equal to] 1.5 Tesla MR scanner; (2) employed invasive coronary angiography as the reference standard for diagnosing significant obstructive CAD, defined as a [greater than or equal to] 50% diameter stenosis; and (3) provided sufficient data to permit analysis.</p> <p>Results</p> <p>From the 263 citations identified, 55 relevant original articles were selected. Only 35 fulfilled all of the inclusion criteria, and of these 26 presented data on patient-based analysis. The overall patient-based analysis demonstrated a sensitivity of 89% (95% CI: 88-91%), and a specificity of 80% (95% CI: 78-83%). Adenosine stress perfusion CMR had better sensitivity than with dipyridamole (90% (88-92%) versus 86% (80-90%), P = 0.022), and a tendency to a better specificity (81% (78-84%) versus 77% (71-82%), P = 0.065).</p> <p>Conclusion</p> <p>Stress perfusion CMR is highly sensitive for detection of CAD but its specificity remains moderate.</p
    corecore