28 research outputs found

    Mitochondrial Fragmentation Is Involved in Methamphetamine-Induced Cell Death in Rat Hippocampal Neural Progenitor Cells

    Get PDF
    Methamphetamine (METH) induces neurodegeneration through damage and apoptosis of dopaminergic nerve terminals and striatal cells, presumably via cross-talk between the endoplasmic reticulum and mitochondria-dependent death cascades. However, the effects of METH on neural progenitor cells (NPC), an important reservoir for replacing neurons and glia during development and injury, remain elusive. Using a rat hippocampal NPC (rhNPC) culture, we characterized the METH-induced mitochondrial fragmentation, apoptosis, and its related signaling mechanism through immunocytochemistry, flow cytometry, and Western blotting. We observed that METH induced rhNPC mitochondrial fragmentation, apoptosis, and inhibited cell proliferation. The mitochondrial fission protein dynamin-related protein 1 (Drp1) and reactive oxygen species (ROS), but not calcium (Ca2+) influx, were involved in the regulation of METH-induced mitochondrial fragmentation. Furthermore, our results indicated that dysregulation of ROS contributed to the oligomerization and translocation of Drp1, resulting in mitochondrial fragmentation in rhNPC. Taken together, our data demonstrate that METH-mediated ROS generation results in the dysregulation of Drp1, which leads to mitochondrial fragmentation and subsequent apoptosis in rhNPC. This provides a potential mechanism for METH-related neurodegenerative disorders, and also provides insight into therapeutic strategies for the neurodegenerative effects of METH

    Genome-Wide Association Study in Asian Populations Identifies Variants in ETS1 and WDFY4 Associated with Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus is a complex and potentially fatal autoimmune disease, characterized by autoantibody production and multi-organ damage. By a genome-wide association study (320 patients and 1,500 controls) and subsequent replication altogether involving a total of 3,300 Asian SLE patients from Hong Kong, Mainland China, and Thailand, as well as 4,200 ethnically and geographically matched controls, genetic variants in ETS1 and WDFY4 were found to be associated with SLE (ETS1: rs1128334, P = 2.33×10−11, OR = 1.29; WDFY4: rs7097397, P = 8.15×10−12, OR = 1.30). ETS1 encodes for a transcription factor known to be involved in a wide range of immune functions, including Th17 cell development and terminal differentiation of B lymphocytes. SNP rs1128334 is located in the 3′-UTR of ETS1, and allelic expression analysis from peripheral blood mononuclear cells showed significantly lower expression level from the risk allele. WDFY4 is a conserved protein with unknown function, but is predominantly expressed in primary and secondary immune tissues, and rs7097397 in WDFY4 changes an arginine residue to glutamine (R1816Q) in this protein. Our study also confirmed association of the HLA locus, STAT4, TNFSF4, BLK, BANK1, IRF5, and TNFAIP3 with SLE in Asians. These new genetic findings may help us to gain a better understanding of the disease and the functions of the genes involved

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Systematic review of hydroxychloroquine use in pregnant patients with autoimmune diseases

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>The purpose of this study is to compare the incidence of congenital defects, spontaneous abortions, number of live births, fetal death and pre-maturity in women with autoimmune diseases taking HCQ during pregnancy.</p> <p>Methods</p> <p>The authors searched MEDLINE, Cochrane data base, Ovid-Currents Clinical Medicine, Ovid-Embase:Drugs and Pharmacology, EBSCO, Web of Science, and SCOPUS using the search terms HCQ and/or pregnancy. We attempted to identify all clinical trials from 1980 to 2007 regardless of language or publication status. We also searched Cochrane Central Library and <url>http://www.Clinical trials.gov</url> for clinical trials of HCQ and pregnancy. Data were extracted onto standardized forms and were confirmed.</p> <p>Results</p> <p>The odds ratio (OR) of congenital defects in live births of women taking HCQ during pregnancy was 0.66, 95% confidence intervals (CI) 0.25, 1.75. The OR of a live birth for women taking HCQ during pregnancy was 1.05 (95% CI 0.58, 1.93). The OR of spontaneous abortion in women taking HCQ during pregnancy was 0.92 (95% CI 0.49, 1.72). The OR of fetal deaths in women taking HCQ during pregnancy was 0.97 (95% CI 0.14, 6.54). The OR of pre-mature birth defined as birth before 37 weeks in women taking HCQ during pregnancy was 1.10 (95% CI 0.75, 1.61).</p> <p>Conclusion</p> <p>HCQ is not associated with any increased risk of congenital defects, spontaneous abortions, fetal death, pre-maturity and decreased numbers of live births in patients with auto-immune diseases.</p
    corecore