23 research outputs found

    Isomeric carbazolocarbazoles: synthesis, characterization and comparative study in Organic Field Effect Transistors

    Get PDF
    We report here the synthesis and characterization of a new family of isomeric carbazolocarbazole derivatives, namely carbazolo[1,2-a]carbazole, carbazolo[3,2-b]carbazoleand carbazolo[4,3-c]carbazole. Thermal, optical, electrochemical, morphological and semiconducting properties have been studied to understand the influence of geometrical isomerism on the optoelectronic properties of these compounds. Different packing patterns have been observed by single crystal X-ray diffraction (XRD) which then correlate with the different morphologies of the evaporated thin films studied by XRD and Atomic Force Microscopy (AFM). The effect of N-substituents has also been evaluated for one of the isomers revealing a noticeable influence on the performance as organic semiconductors in Organic Field Effect Transistors (OFETs). A good p-channel field effect has been determined for N,N′-dioctylcarbazolo[4,3-c]carbazole with a mobility of 0.02 cm2 V−1 s−1 and Ion/Ioff ratio of 106 in air. These preliminary results demonstrate the promising properties of molecular carbazolocarbazole systems which should be further explored in the area of organic semiconducting materials

    Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells

    No full text
    Despite repeated associations between T cell infiltration and outcome, human ovarian cancer remains poorly responsive to immunotherapy. We report that the hallmarks of tumor recognition in ovarian cancer-infiltrating T cells are primarily restricted to tissue-resident memory (TRM) cells. Single-cell RNA/TCR/ATAC sequencing of 83,454 CD3(+) CD8(+)CD103(+)CD69(+) TRM cells and immunohistochemistry of 122 high-grade serous ovarian cancers shows that only progenitor (TCF1(low)) tissue-resident T cells (TRMstem cells), but not recirculating TCF1(+) T cells, predict ovarian cancer outcome. TRMstem cells arise from transitional recirculating T cells, which depends on antigen affinity/persistence, resulting in oligoclonal, trogocytic, effector lymphocytes that eventually become exhausted. Therefore, ovarian cancer is indeed an immunogenic disease, but that depends on similar to 13% of CD8(+) tumor-infiltrating T cells (similar to 3% of CD8(+) clonotypes), which are primed against high-affinity antigens and maintain waves of effector TRM-like cells. Our results define the signature of relevant tumor-reactive T cells in human ovarian cancer, which could be applicable to other tumors with unideal mutational burden

    Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells

    No full text
    Despite repeated associations between T cell infiltration and outcome, human ovarian cancer remains poorly responsive to immunotherapy. We report that the hallmarks of tumor recognition in ovarian cancer-infiltrating T cells are primarily restricted to tissue-resident memory (TRM) cells. Single-cell RNA/TCR/ATAC sequencing of 83,454 CD3(+) CD8(+)CD103(+)CD69(+) TRM cells and immunohistochemistry of 122 high-grade serous ovarian cancers shows that only progenitor (TCF1(low)) tissue-resident T cells (TRMstem cells), but not recirculating TCF1(+) T cells, predict ovarian cancer outcome. TRMstem cells arise from transitional recirculating T cells, which depends on antigen affinity/persistence, resulting in oligoclonal, trogocytic, effector lymphocytes that eventually become exhausted. Therefore, ovarian cancer is indeed an immunogenic disease, but that depends on similar to 13% of CD8(+) tumor-infiltrating T cells (similar to 3% of CD8(+) clonotypes), which are primed against high-affinity antigens and maintain waves of effector TRM-like cells. Our results define the signature of relevant tumor-reactive T cells in human ovarian cancer, which could be applicable to other tumors with unideal mutational burden.Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease
    corecore