171 research outputs found

    Probing phase coexistence and stabilization of the spin-ordered ferrimagnetic state by Calcium addition in the YBa_{1-x}Ca_{x}Co_{2}O_{5.5} layered cobaltites using neutron diffraction

    Get PDF
    In this article we study the effects of a partial substitution of Ba with the smaller cation Ca in the layered cobaltites YBaCo_2O_{5+\delta} for \delta \approx 0.5. Neutron thermodiffractograms are reported for the compounds YBa_{0.95}Ca_{0.05}Co_2O_{5.5} (x_{Ca}=0.05) and YBa_{0.90}Ca_{0.10}Co_2O_{5.5} (x_{Ca}=0.10) in the temperature range 20 K \leq T \leq 300 K, as well as high resolution neutron diffraction experiments at selected temperatures for the samples x_{Ca}=0.05, x_{Ca}=0.10 and the parent compound x_{Ca}=0. We have found the magnetic properties to be strongly affected by the cationic substitution. Although the "122" perovskite structure seems unaffected by Ca addition, the magnetic arrangements of Co ions are drastically modified: the antiferromagnetic (AFM) long-range order is destroyed, and a ferrimagnetic phase with spin state order is stabilized below T \sim 290 K. For the sample with x_{Ca}=0.05 a fraction of AFM phase coexists with the ferrimagnetic one below T \sim 190 K, whereas for x_{Ca}=0.10 the AFM order is completely lost. The systematic refinement of the whole series has allowed for a better understanding of the observed low-temperature diffraction patterns of the parent compound, YBaCo_2O_{5.5}, which had not yet been clarified. A two-phase scenario is proposed for the x_{Ca}=0 compound which is compatible with the phase coexistence observed in the x_{Ca}=0.05 sample

    High temperature behavior of Sr-doped layered cobaltites Y(Ba1-xSrx)Co2O5.5: phase stability and structural properties

    Full text link
    In this article we present a neutron diffraction in-situ study of the thermal evolution and high-temperature structure of layered cobaltites Y(Ba, Sr)Co2 O5+{\delta}. Neutron thermodiffractograms and magnetic susceptibility measurements are reported in the temperature range 20 K <= T <= 570 K, as well as high resolution neutron diffraction experiments at selected temperatures. Starting from the as-synthesized samples with {\delta} ~ 0.5, we show that the room temperature phases remain stable up to 550 K, where they start loosing oxygen and transform to a vacancy-disordered "112" structure with tetragonal symmetry. Our results also show how the so-called "122" structure can be stabilized at high temperature (around 450 K) in a sample in which the addition of Sr at the Ba site had suppressed its formation. In addition, we present the structural and magnetic properties of the resulting samples with a new oxygen content {\delta} ~ 0.25 in the temperature range 20 K <= T <= 300 K

    Current Induced Fingering Instability in Magnetic Domain Walls

    Get PDF
    The shape instability of magnetic domain walls under current is investigated in a ferromagnetic (Ga,Mn)(As,P) film with perpendicular anisotropy. Domain wall motion is driven by the spin transfer torque mechanism. A current density gradient is found either to stabilize domains with walls perpendicular to current lines or to produce finger-like patterns, depending on the domain wall motion direction. The instability mechanism is shown to result from the non-adiabatic contribution of the spin transfer torque mechanism.Comment: 5 pages, 3 figures + supplementary material

    Unidirectional Thermal Effects in Current-Induced Domain Wall Motion

    Get PDF
    We report experimental evidence of thermal effects on the displacement of vortex walls in NiFe nanostrips. With the use of nanosecond current pulses, a unidirectional motion of the magnetic domain walls towards the hotter part of the nanostrips is observed, in addition to current-induced domain wall motion. By tuning the heat dissipation in the samples and modeling the heat diffusion, we conclude that this unidirectional motion can only be explained by the presence of a temperature profile along the nanostrip. A quantitative analysis of the experiments shows that, on top of the classical thermodynamic pressure on the domain wall, another force, probably the magnonic spin Seebeck effect, is displacing the domain walls.Fil: Torrejon, J.. Centre National de la Recherche Scientifique; FranciaFil: Malinowski, G.. Centre National de la Recherche Scientifique; FranciaFil: Pelloux, M.. Centre National de la Recherche Scientifique; FranciaFil: Weil, R.. Centre National de la Recherche Scientifique; FranciaFil: Thiaville, A.. Centre National de la Recherche Scientifique; FranciaFil: Curiale, Carlos Javier. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Lacour, D.. Centre National de la Recherche Scientifique; FranciaFil: Montaigne, F.. Centre National de la Recherche Scientifique; FranciaFil: Hehn, M.. Centre National de la Recherche Scientifique; Franci

    Transient magnetic domain wall ac dynamics by means of magneto-optical Kerr effect microscopy

    Get PDF
    The domain wall response under constant external magnetic fields reveals a complex behavior where sample disorder plays a key role. Furthermore, the response to alternating magnetic fields has only been explored in limited cases and analyzed in terms of the constant field solution. Here we unveil phenomena in the evolution of magnetic domain walls under the application of alternating magnetic fields within the creep regime, well beyond a small fuctuation limit of the domain wall position. Magnetic field pulses were applied in ultra-thin ferromagnetic films with perpendicular anisotropy, and the resulting domain wall evolution was characterized by polar magneto-optical Kerr effect microscopy. Whereas the DC characterization is well predicted by the elastic interface model, striking unexpected features are observed under the application of alternating square pulses: magneto-optical images show that after a transient number of cycles, domain walls evolve toward strongly distorted shapes concomitantly with a modification of domain area. The morphology of domain walls is characterized with a roughness exponent when possible and contrasted with alternative observables which result to be more suitable for the characterization of this transient evolution. The final stationary convergence as well as the underlying physics is discussed.Comment: 9 pages, 8 figure

    Low temperature irreversibility induced by thermal cycles on two prototypical phase separated manganites

    Full text link
    We have studied the effect of irreversibility induced by repeated thermal cycles on the electric transport and magnetization of polycrystalline samples of La0.5Ca0.5MnO3 and La0.325Pr0.3Ca0.375MnO3. An increase of the resistivity and a decrease of the magnetization at different temperature ranges after cycling is obtained in the temperature range between 300 K and 30 K. Both compounds are known to exhibit intrinsic submicrometric coexistence of phases and undergo a sequence of phase transitions related to structural changes. Changes induced by thermal cycling can be partially inhibited by applying magnetic field and hydrostatic pressure. Our results suggest that the growth and coexistence of phases with different structures gives rise to microstructural tracks and strain accommodation, producing the observed irreversibility. Irrespective of the actual ground state of each compound, the effect of thermal cycling is towards an increase of the amount of the insulating phase in both compounds.Comment: to appear in Journal of Alloys and Compounds (2003

    Intravenous tPA for Acute Ischemic Stroke in Patients with COVID-19

    Get PDF
    BACKGROUND/PURPOSE: Coronavirus disease 2019 (COVID-19) is associated with increased risk of acute ischemic stroke (AIS), however, there is a paucity of data regarding outcomes after administration of intravenous tissue plasminogen activator (IV tPA) for stroke in patients with COVID-19. METHODS: We present a multicenter case series from 9 centers in the United States of patients with acute neurological deficits consistent with AIS and COVID-19 who were treated with IV tPA. RESULTS: We identified 13 patients (mean age 62 (±9.8) years, 9 (69.2%) male). All received IV tPA and 3 cases also underwent mechanical thrombectomy. All patients had systemic symptoms consistent with COVID-19 at the time of admission: fever (5 patients), cough (7 patients), and dyspnea (8 patients). The median admission NIH stroke scale (NIHSS) score was 14.5 (range 3-26) and most patients (61.5%) improved at follow up (median NIHSS score 7.5, range 0-25). No systemic or symptomatic intracranial hemorrhages were seen. Stroke mechanisms included cardioembolic (3 patients), large artery atherosclerosis (2 patients), small vessel disease (1 patient), embolic stroke of undetermined source (3 patients), and cryptogenic with incomplete investigation (1 patient). Three patients were determined to have transient ischemic attacks or aborted strokes. Two out of 12 (16.6%) patients had elevated fibrinogen levels on admission (mean 262.2 ± 87.5 mg/dl), and 7 out of 11 (63.6%) patients had an elevated D-dimer level (mean 4284.6 ±3368.9 ng/ml). CONCLUSIONS: IV tPA may be safe and efficacious in COVID-19, but larger studies are needed to validate these results
    • …
    corecore