14,874 research outputs found

    Accessing the Acceleration of the Universe with Sunyaev-Zel'dovich and X-ray Data from Galaxy Clusters

    Full text link
    By using exclusively the Sunyaev-Zel'dovich effect and X-ray surface brightness data from 25 galaxy clusters in the redshift range 0.023< z < 0.784 we access cosmic acceleration employing a kinematic description. Such result is fully independent on the validity of any metric gravity theory, the possible matter-energy contents filling the Universe, as well as on the SNe Ia Hubble diagram.Comment: 3 pages, 4 figures, To appear in the Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativit

    Are Galaxy Clusters Suggesting an Accelerating Universe?

    Full text link
    The present cosmic accelerating stage is discussed through a new kinematic method based on the Sunyaev- Zel'dovich effect (SZE) and X-ray surface brightness data from galaxy clusters. By using the SZE/X-ray data from 38 galaxy clusters in the redshift range 0.14≀z≀0.890.14 \leq z \leq 0.89 [Bonamente et al., Astrop. J. {\bf 647}, 25 (2006)] it is found that the present Universe is accelerating and that the transition from an earlier decelerating to a late time accelerating regime is relatively recent. The ability of the ongoing Planck satellite mission to obtain tighter constraints on the expansion history through SZE/X-ray angular diameters is also discussed. Our results are fully independent on the validity of any metric gravity theory, the possible matter- energy contents filling the Universe, as well as on the SNe Ia Hubble diagram from which the presenting accelerating stage was inferred.Comment: 6 pages, 6 figures, AIP Conf. Proc. Invisible Universe: Proceedings of the Conferenc

    Refactoring smelly spreadsheet models

    Get PDF
    Identifying bad design patterns in software is a successful and inspiring research trend. While these patterns do not necessarily correspond to software errors, the fact is that they raise potential problematic issues, often referred to as code smells, and that can for example compromise maintainability or evolution. The identification of code smells in spreadsheets, which can be viewed as software development environments for non-professional programmers, has already been the subject of confluent researches by different groups. While these research groups have focused on detecting smells on concrete spreadsheets, or spreadsheet instances, in this paper we propose a comprehensive set of smells for abstract representations of spreadsheets, or spreadsheet models. We also propose a set of refactorings suggesting how spreadsheet models can become simpler to understand, manipulate and evolve. Finally we present the integration of both smells and refactorings under the MDSheet framework.Part funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundação para a CiĂȘncia e a Tecnologia within projects FCOMP-01-0124-FEDER-022701 and Network Sensing for Critical Systems Monitoring (NORTE-01-0124-FEDER-000058), ref. BIM-2013 BestCase RL3.2 UMINHO

    Asteroseismic Theory of Rapidly Oscillating Ap Stars

    Get PDF
    This paper reviews some of the important advances made over the last decade concerning theory of roAp stars.Comment: 9 pages, 5 figure

    New Constraints on the Variable Equation of State Parameter from X-Ray Gas Mass Fractions and SNe Ia

    Get PDF
    Recent measurements are suggesting that we live in a flat Universe and that its present accelerating stage is driven by a dark energy component whose equation of state may evolve in time. Assuming two different parameterizations for the function ω(z)\omega(z), we constrain their free parameters from a joint analysis involving measurements from X-Ray luminosity of galaxy clusters and SNe type Ia data.Comment: paper, 6 pages, 1 figure Accepted by Int. Journal of Modern Physics D (IJPMD

    Impact of micro-telluric lines on precise radial velocities and its correction

    Full text link
    Context: In the near future, new instruments such as ESPRESSO will arrive, allowing us to reach a precision in radial-velocity measurements on the order of 10 cm/s. At this level of precision, several noise sources that until now have been outweighed by photon noise will start to contribute significantly to the error budget. The telluric lines that are not neglected by the masks for the radial velocity computation, here called micro-telluric lines, are one such noise source. Aims: In this work we investigate the impact of micro-telluric lines in the radial velocities calculations. We also investigate how to correct the effect of these atmospheric lines on radial velocities. Methods: The work presented here follows two parallel lines. First, we calculated the impact of the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum by synthetic atmospheric spectra and evaluated the effect created by the presence of the telluric lines. Then, we divided HARPS spectra by synthetic atmospheric spectra to correct for its presence on real data and calculated the radial velocity on the corrected spectra. When doing so, one considers two atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS. Results: We find that the micro-telluric lines can induce an impact on the radial velocities calculation that can already be close to the current precision achieved with HARPS, and so its effect should not be neglected, especially for future instruments such as ESPRESSO. Moreover, we find that the micro-telluric lines' impact depends on factors, such as the radial velocity of the star, airmass, relative humidity, and the barycentric Earth radial velocity projected along the line of sight at the time of the observation.Comment: Accepted in A&

    Tomographic Characterization of Three-Qubit Pure States with Only Two-Qubit Detectors

    Full text link
    A tomographic process for three-qubit pure states using only pairwise detections is presented.Comment: 3 pages; revtex4; v2: the focus on tomography was emphasized and the experimental procedure detailed; v3: the text was improved in clarity, some mistakes were correcte

    Cancellation of atmospheric turbulence effects in entangled two-photon beams

    Full text link
    Turbulent airflow in the atmosphere and the resulting random fluctuations in its refractive index have long been known as a major cause of image deterioration in astronomical imaging and figures among the obstacles for reliable optical communication when information is encoded in the spatial profile of a laser beam. Here we show that using correlation imaging and a suitably prepared source of photon pairs, the most severe of the disturbances inflicted on the beam by turbulence can be cancelled out. Other than a two-photon light source, only linear passive optical elements are needed and, as opposed to adaptive optics techniques, our scheme does not rely on active wavefront correction.Comment: 5 pages, 3 figure
    • 

    corecore