334 research outputs found

    Computer, manager, organisatie, deel I en II

    Get PDF

    Vanishing of cosmological constant in nonfactorizable geometry

    Get PDF
    We generalize the results of Randall and Sundrum to a wider class of four-dimensional space-times including the four-dimensional Schwarzschild background and de Sitter universe. We solve the equation for graviton propagation in a general four dimensional background and find an explicit solution for a zero mass bound state of the graviton. We find that this zero mass bound state is normalizable only if the cosmological constant is strictly zero, thereby providing a dynamical reason for the vanishing of cosmological constant within the context of this model. We also show that the results of Randall and Sundrum can be generalized without any modification to the Schwarzschild background.Comment: 8 Pages(expanded version), Accepted in Phys. Rev.

    Bhabha Scattering with Radiated Gravitons at Linear Colliders

    Full text link
    We study the process e+- e- -> e+- e- +- missing energy at a high-energy e+- e- collider, where the missing energy arises from the radiation of Kaluza-Klein gravitons in a model with large extra dimensions. It is shown that at a high-energy linear collider, this process can not only confirm the signature of such theories but can also sometimes be comparable in effectiveness to the commonly discussed channel e+- e- -> gamma +- missing energy, especially for a large number of extra dimensions and with polarized beams. We also suggest some ways of distinguishing the signals of a graviton tower from other types of new physics signals by combining data on our suggested channel with those on the photon-graviton channel.Comment: 16 pages, LaTex, 8 figures embedded, typos, report no and references correcte

    Semiclassical approach to the thermodynamics of spin chains

    Full text link
    Using the PQSCHA semiclassical method, we evaluate thermodynamic quantities of one-dimensional Heisenberg ferro- and antiferromagnets. Since the PQSCHA reduces their evaluation to classical-like calculations, we take advantage of Fisher's exact solution to get all results in an almost fully analytical way. Explicitly considered here are the specific heat, the correlations length and susceptibility. Good agreement with Monte Carlo simulations is found for S>1 antiferromagnets, showing that the relevance of the topological terms and of the Haldane gap is significant only for the lowest spin values and temperatures.Comment: 4 pages, 7 figure

    Lensing at cosmological scales: a test of higher dimensional gravity

    Full text link
    Recent developments in gravitational lensing astronomy have paved the way to genuine mappings of the gravitational potential at cosmological scales. We stress that comparing these data with traditional large scale structure surveys will provide us with a test of gravity at such scales. These constraints could be of great importance in the framework of higher dimensional cosmological models.Comment: 4 pages, latex, 3 figure

    Large extra dimension effects in Higgs boson production at linear colliders and Higgs factories

    Full text link
    In the framework of quantum gravity propagating in large extra dimensions, the effects of virtual Kaluza-Klein graviton and graviscalar interference with Higgs boson production amplitudes are computed at linear colliders and Higgs factories. The interference of the almost-continuous spectrum of the KK gravitons with the standard model resonant amplitude is finite and predictable in terms of the fundamental D-dimensional Plank scale M_D and the number of extra dimensions \delta. We find that, for M_D ~ 1 TeV and \delta=2, effects of the order of a few percent could be detected for heavy Higgs bosons (m_H>500 GeV) in Higgs production both via WW fusion in e^+e^- colliders and at \mu^+\mu^- Higgs-boson factories.Comment: 16 pages, 2 figures ; a few comments and references added ; version to appear in JHE

    COVID-19 vaccine safety in Scotland - background rates of adverse events of special interest

    Get PDF
    Objectives: Mass COVID-19 vaccination commenced in December 2020 in Scotland. Monitoring vaccine safety relies on accurate background incidence rates (IRs) for health outcomes potentially associated with vaccination. This study aimed to quantify IRs in Scotland of adverse events of special interest (AESI) potentially associated with COVID-19 vaccination. Study design and methods: IRs and 95% confidence intervals (CIs) for 36 AESI were calculated retrospectively for the pre-COVID-19 pandemic period (01 January 2015–31 December 2019) and the COVID-19 pandemic period (01 April 2020–30 November 2020), with age-sex stratification, and separately by calendar month and year. Incident cases were determined using International Classification of Diseases-10th Revision (ICD-10)–coded hospitalisations. Results: Prepandemic population-wide IRs ranged from 0.4 (0.3–0.5 CIs) cases per 100,000 person-years (PYRS) for neuromyelitis optica to 478.4 (475.8–481.0 CIs) cases per 100,000 PYRS for acute renal failure. Pandemic population-wide IRs ranged from 0.3 (0.2–0.5 CIs) cases per 100,000 PYRS for Kawasaki disease to 483.4 (473.2–493.7 CIs) cases per 100,000 PYRS for acute coronary syndrome. All AESI IRs varied by age and sex. Ten AESI (acute coronary syndrome, acute myocardial infarction, angina pectoris, heart failure, multiple sclerosis, polyneuropathies and peripheral neuropathies, respiratory failure, rheumatoid arthritis and polyarthritis, seizures and vasculitis) had lower pandemic than prepandemic period IRs overall. Only deep vein thrombosis and pulmonary embolism had a higher pandemic IR. Conclusion: Lower pandemic IRs likely resulted from reduced health-seeking behaviours and healthcare provision. Higher IRs may be associated with SARS-CoV-2 infections. AESI IRs will facilitate future vaccine safety studies in Scotland

    Photon mixing in universes with large extra-dimensions

    Get PDF
    In presence of a magnetic field, photons can mix with any particle having a two-photon vertex. In theories with large compact extra-dimensions, there exists a hierachy of massive Kaluza-Klein gravitons that couple to any photon entering a magnetic field. We study this mixing and show that, in comparison with the four dimensional situation where the photon couples only to the massless graviton, the oscillation effect may be enhanced due to the existence of a large number of Kaluza-Klein modes. We give the conditions for such an enhancement and then investigate the cosmological and astrophysical consequences of this phenomenon; we also discuss some laboratory experiments. Axions also couple to photons in the same way; we discuss the effect of the existence of bulk axions in universes with large extra-dimensions. The results can also be applied to neutrino physics with extra-dimensions.Comment: 41 pages, LaTex, 6 figure

    Large Extra Dimensions and Decaying KK Recurrences

    Full text link
    We suggest the possibility that in ADD type brane-world scenarios, the higher KK excitations of the graviton may decay to lower ones owing to a breakdown of the conservation of extra dimensional ``momenta'' and study its implications for astrophysics and cosmology. We give an explicit realization of this idea with a bulk scalar field Φ\Phi, whose nonzero KK modes acquire vacuum expectation values. This scenario helps to avoid constraints on large extra dimensions that come from gamma ray flux bounds in the direction of nearby supernovae as well as those coming from diffuse cosmological gamma ray background. It also relaxes the very stringent limits on reheat temperature of the universe in ADD models.Comment: 16 pages, late

    The prediction of preference for unfamiliar urban places

    Full text link
    Preferences for unfamiliar urban environments were studied as a function of urban categories, viewing time, and four predictor variables: complexity, coherence, identifiability, and mystery. A nonmetric factor analysis of the preference ratings for the longest viewing-time condition yielded five dimensions: Contemporary Life, Alley/Factory, Urban Nature, Unusual Architecture, and Older Buildings. The five categories differed significantly in preference, with Urban Nature by far the most preferred and Alley/Factory distinctly disliked. The combination of low coherence and high complexity characterizes the least liked Alley/Factory category, while the role of mystery in the urban setting is highlighted by the most preferred Urban Nature category. The results point to various ways in which the urban environment could be more responsive to people's preferences.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43513/1/11111_2005_Article_BF01359051.pd
    • …
    corecore