9 research outputs found
An overview of using small punch testing for mechanical characterization of MCrAlY bond coats
Considerable work has been carried out on overlay bond coats in the past several decades because of its excellent oxidation resistance and good adhesion between the top coat and superalloy substrate in the thermal barrier coating systems. Previous studies mainly focus on oxidation and diffusion behavior of these coatings. However, the mechanical behavior and the dominant fracture and deformation mechanisms of the overlay bond coats at different temperatures are still under investigation. Direct comparison between individual studies has not yet been achieved due to the fragmentary data on deposition processes, microstructure and, more apparently, the difficulty in accurately measuring the mechanical properties of thin coatings. One of the miniaturized specimen testing methods, small punch testing, appears to have the potential to provide such mechanical property measurements for thin coatings. The purpose of this paper is to give an overview of using small punch testing to evaluate material properties and to summarize the available mechanical properties that include the ductile-to-brittle transition and creep of MCrAlY bond coat alloys, in an attempt to understand the mechanical behavior of MCrAlY coatings over a broad temperature range
Bond Coat Engineering Influence on the Evolution of the Microstructure, Bond Strength, and Failure of TBCs Subjected to Thermal Cycling
Global Research Trends in Thermal Sprayed Coatings Technology Analyzed with Bibliometrics Tools
Preparation and Performance of an Abradable NiCrFeAlBN-YSZ-NiCrAl Layered Seal Coating for Aircraft Engines
Influence of Feedstock on the Microstructure of Sm2Zr2O7 Thermal Barrier Coatings Deposited by Plasma Spraying
The 2016 Thermal Spray Roadmap
Considerable progress has been made over the last decades in thermal spray technologies, practices and applications. However, like other technologies, they have to continuously evolve to meet new problems and market requirements. This article aims to identify the current challenges limiting the evolution of these technologies and to propose research directions and priorities to meet these challenges. It was prepared on the basis of a collection of short articles written by experts in thermal spray who were asked to present a snapshot of the current state of their specific field, give their views on current challenges faced by the field and provide some guidance as to the R&D required to meet these challenges. The article is divided in three sections that deal with the emerging thermal spray processes, coating properties and function, and biomedical, electronic, aerospace and energy generation applications
