10 research outputs found

    An Extensive Circuitry for Cell Wall Regulation in Candida albicans

    Get PDF
    Protein kinases play key roles in signaling and response to changes in the external environment. The ability of Candida albicans to quickly sense and respond to changes in its environment is key to its survival in the human host. Our guiding hypothesis was that creating and screening a set of protein kinase mutant strains would reveal signaling pathways that mediate stress response in C. albicans. A library of protein kinase mutant strains was created and screened for sensitivity to a variety of stresses. For the majority of stresses tested, stress response was largely conserved between C. albicans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. However, we identified eight protein kinases whose roles in cell wall regulation (CWR) were not expected from functions of their orthologs in the model fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe. Analysis of the conserved roles of these protein kinases indicates that establishment of cell polarity is critical for CWR. In addition, we found that septins, crucial to budding, are both important for surviving and are mislocalized by cell wall stress. Our study shows an expanded role for protein kinase signaling in C. albicans cell wall integrity. Our studies suggest that in some cases, this expansion represents a greater importance for certain pathways in cell wall biogenesis. In other cases, it appears that signaling pathways have been rewired for a cell wall integrity response

    Genes Selectively Up-Regulated by Pheromone in White Cells Are Involved in Biofilm Formation in Candida albicans

    Get PDF
    To mate, MTL-homozygous strains of the yeast pathogen Candida albicans must switch from the white to opaque phase. Mating-competent opaque cells then release pheromone that induces polarization, a G1 block and conjugation tube formation in opaque cells of opposite mating type. Pheromone also induces mating-incompetent white cells to become adhesive and cohesive, and form thicker biofilms that facilitate mating. The pheromone response pathway of white cells shares the upstream components of that of opaque cells, but targets a different transcription factor. Here we demonstrate that the genes up-regulated by the pheromone in white cells are activated through a common cis-acting sequence, WPRE, which is distinct from the cis-acting sequence, OPRE, responsible for up-regulation in opaque cells. Furthermore, we find that these white-specific genes play roles in white cell biofilm formation, and are essential for biofilm formation in the absence of an added source of pheromone, suggesting either an autocrine or pheromone-independent mechanism. These results suggest an intimate, complex and unique relationship between switching, mating and MTL-homozygous white cell biofilm formation, the latter a presumed virulence factor in C. albicans

    GPI Anchored Proteins in Aspergillus fumigatus and Cell Wall Morphogenesis

    No full text
    International audienceGlycosylphosphatidylinositol (GPI) anchored proteins are a class of proteins attached to the extracellular leaflet of the plasma membrane via a post-translational modification, the glycolipid anchor. GPI anchored proteins are expressed in all eukaryotes, from fungi to plants and animals. They display very diverse functions ranging from enzymatic activity, signaling, cell adhesion, cell wall metabolism, and immune response. In this review, we investigated for the first time an exhaustive list of all the GPI anchored proteins present in the Aspergillus fumigatus genome. An A. fumigatus mutant library of all the genes that encode in silico identified GPI anchored proteins has been constructed and the phenotypic analysis of all these mutants has been characterized including their growth, conidial viability or morphology, adhesion and the ability to form biofilms. We showed the presence of different fungal categories of GPI anchored proteins in the A. fumigatus genome associated to their role in cell wall remodeling, adhesion, and biofilm formation

    Glucanases and Chitinases

    No full text
    In many yeast and fungi, β-(1,3)-glucan and chitin are essential components of the cell wall, an important structure that surrounds cells and which is responsible for their mechanical protection and necessary for maintaining the cellular shape. In addition, the cell wall is a dynamic structure that needs to be remodelled along with the different phases of the fungal life cycle or in response to extracellular stimuli. Since β-(1,3)-glucan and chitin perform a central structural role in the assembly of the cell wall, it has been postulated that β-(1,3)-glucanases and chitinases should perform an important function in cell wall softening and remodelling. This review focusses on fungal glucanases and chitinases and their role during fungal morphogenesis.This work was supported by grants from the Spanish Government to CR (BFU2017-84508-P) and CRV (BIO2015-70195-C2-1-R) and from Junta de Castilla y León to CR (SA116G19). The IBFG is supported by Programa “Escalera de Excelencia” from Junta de Castilla y León (CLU-2017-03) and University of Salamanca. All Spanish funding is co-sponsored by the European Union FEDER programme.Peer reviewe

    Yeast Biofilms

    No full text
    Yeast biofilms are an escalating clinical problem, which affect both the healthy and immunocompromised, and are related to significant rates of mortality within hospitalized patients. Candida albicans is the most notorious yeast biofilm former and as a result the most widely studied; however, other Candida species and yeasts such as Cryptococcus neoformans are also implicated in biofilm-associated infections. Yeast biofilms have distinct developmental phases, including adhesion, colonization, maturation and dispersal, which have been examined utilizing various in vitro and in vivo model systems. Furthermore, the complex molecular events governing biofilm development are slowly being elucidated, including the role of quorum sensing. Clinically, biofilms act as reservoirs for systemic infection, and also induce localized pathology and tissue damage. However, the key virulence factor is their recalcitrance to antifungal therapy. This chapter will discuss our current understanding of the role that yeast biofilms play in the clinical setting

    Secreted Candida Proteins: Pathogenicity and Host Immunity

    No full text
    corecore