227 research outputs found

    Low-pathogenicity Mycoplasma spp. alter human monocyte and macrophage function and are highly prevalent among patients with ventilator-acquired pneumonia.

    Get PDF
    BACKGROUND: Ventilator-acquired pneumonia (VAP) remains a significant problem within intensive care units (ICUs). There is a growing recognition of the impact of critical-illness-induced immunoparesis on the pathogenesis of VAP, but the mechanisms remain incompletely understood. We hypothesised that, because of limitations in their routine detection, Mycoplasmataceae are more prevalent among patients with VAP than previously recognised, and that these organisms potentially impair immune cell function. METHODS AND SETTING: 159 patients were recruited from 12 UK ICUs. All patients had suspected VAP and underwent bronchoscopy and bronchoalveolar lavage (BAL). VAP was defined as growth of organisms at >10(4) colony forming units per ml of BAL fluid on conventional culture. Samples were tested for Mycoplasmataceae (Mycoplasma and Ureaplasma spp.) by PCR, and positive samples underwent sequencing for speciation. 36 healthy donors underwent BAL for comparison. Additionally, healthy donor monocytes and macrophages were exposed to Mycoplasma salivarium and their ability to respond to lipopolysaccharide and undertake phagocytosis was assessed. RESULTS: Mycoplasmataceae were found in 49% (95% CI 33% to 65%) of patients with VAP, compared with 14% (95% CI 9% to 25%) of patients without VAP. Patients with sterile BAL fluid had a similar prevalence to healthy donor BAL fluid (10% (95% CI 4% to 20%) vs 8% (95% CI 2% to 22%)). The most common organism identified was M. salivarium. Blood monocytes from healthy volunteers incubated with M. salivarium displayed an impaired TNF-α response to lipopolysaccharide (p=0.0003), as did monocyte-derived macrophages (MDMs) (p=0.024). MDM exposed to M. salivarium demonstrated impaired phagocytosis (p=0.005). DISCUSSION AND CONCLUSIONS: This study demonstrates a high prevalence of Mycoplasmataceae among patients with VAP, with a markedly lower prevalence among patients with suspected VAP in whom subsequent cultures refuted the diagnosis. The most common organism found, M. salivarium, is able to alter the functions of key immune cells. Mycoplasmataceae may contribute to VAP pathogenesis.This study was funded by the Hospital Infection Society, Wellcome Trust/Department of Health Health Innovation Challenge Fund (HICF)(0510/078) and Sir Jules Thorn Charitable Trust (03/JTA).This is the final version of the article. It first appeared from BMJ Publishing Group via http://dx.doi.org/10.1136/thoraxjnl-2015-20805

    The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments

    Get PDF
    BACKGROUND: Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader's ability to evaluate critically the quality of the results presented or to repeat the experiments. CONTENT: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. SUMMARY: Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results

    Measuring Individual Material Well-Being Using Multidimensional Indices: An Application Using the Gender and Generation Survey for Russia

    Get PDF
    This paper suggests a new and comprehensive approach to the assessment of the material well-being at the individual level by constructing a multidimensional index. Using this approach, material well-being is understood as a generic notion that covers a number of different domains, whereas the concept of domain is used to distinguish between different aspects of people’s resources, including income security, basic needs, durables, housing and subjective material well-being. Each dimension is measured independently, using the best indicators available, to generate a score or domain index for each aspect of material well-being. The procedure of re-weighting the indicators within the separate domains enables us to account for the disparity in resources and consumer preferences across different population subgroups. The final domain scores, combined with explicit weighting, are then used to generate a summary material well-being index. The domain indices and the summary material well-being index are validated by exploring their relationships to key socio-economic attributes, which were previously shown to be strongly associated with individual material well-being. The results showed that the summary indices of material well-being are characterized by greater differentiation in relation to such measures, as occupational class and judgments of satisfaction with one’s life. This allows us to conclude that our summary indices capture the latent concept of material well-being better than any of our domain indices used separately. Although the index is constructed using the Russian Gender and Generation Survey data for 2007, the methodological approach that we applied can be easily replicated in other surveys which contain information on several aspects of material well-being

    Stochastically Gating Ion Channels Enable Patterned Spike Firing through Activity-Dependent Modulation of Spike Probability

    Get PDF
    The transformation of synaptic input into patterns of spike output is a fundamental operation that is determined by the particular complement of ion channels that a neuron expresses. Although it is well established that individual ion channel proteins make stochastic transitions between conducting and non-conducting states, most models of synaptic integration are deterministic, and relatively little is known about the functional consequences of interactions between stochastically gating ion channels. Here, we show that a model of stellate neurons from layer II of the medial entorhinal cortex implemented with either stochastic or deterministically gating ion channels can reproduce the resting membrane properties of stellate neurons, but only the stochastic version of the model can fully account for perithreshold membrane potential fluctuations and clustered patterns of spike output that are recorded from stellate neurons during depolarized states. We demonstrate that the stochastic model implements an example of a general mechanism for patterning of neuronal output through activity-dependent changes in the probability of spike firing. Unlike deterministic mechanisms that generate spike patterns through slow changes in the state of model parameters, this general stochastic mechanism does not require retention of information beyond the duration of a single spike and its associated afterhyperpolarization. Instead, clustered patterns of spikes emerge in the stochastic model of stellate neurons as a result of a transient increase in firing probability driven by activation of HCN channels during recovery from the spike afterhyperpolarization. Using this model, we infer conditions in which stochastic ion channel gating may influence firing patterns in vivo and predict consequences of modifications of HCN channel function for in vivo firing patterns

    Chemical combination effects predict connectivity in biological systems

    Get PDF
    Efforts to construct therapeutically useful models of biological systems require large and diverse sets of data on functional connections between their components. Here we show that cellular responses to combinations of chemicals reveal how their biological targets are connected. Simulations of pathways with pairs of inhibitors at varying doses predict distinct response surface shapes that are reproduced in a yeast experiment, with further support from a larger screen using human tumour cells. The response morphology yields detailed connectivity constraints between nearby targets, and synergy profiles across many combinations show relatedness between targets in the whole network. Constraints from chemical combinations complement genetic studies, because they probe different cellular components and can be applied to disease models that are not amenable to mutagenesis. Chemical probes also offer increased flexibility, as they can be continuously dosed, temporally controlled, and readily combined. After extending this initial study to cover a wider range of combination effects and pathway topologies, chemical combinations may be used to refine network models or to identify novel targets. This response surface methodology may even apply to non-biological systems where responses to targeted perturbations can be measured

    Increased expression of carbonic anhydrase I in the synovium of patients with ankylosing spondylitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most distinctive features of ankylosing spondylitis (AS) is new bone formation and bone resorption at sites of chronic inflammation. Previous studies have indicated that the hyperplasia and inflammation of synovial tissues are significantly related to the pathogenic process of AS. The present study used a proteomic approach to identify novel AS-specific proteins by simultaneously comparing the expression profiles of synovial membranes from patients with AS, rheumatoid arthritis (RA) and osteoarthritis (OA).</p> <p>Methods</p> <p>Synovial tissues were collected from the hip joints of patients with AS and knee joints of patients with RA or OA (n = 10 for each disease) during joint replacement surgery. Proteins extracted from the synovial tissues were separated by 2-D electrophoresis (2-DE), and the proteins with significantly increased expression in the AS samples were subjected to MALDI-TOF/TOF-MS analysis. The results were verified using western blotting and immunohistochemistry. Levels of the candidate proteins in synovial fluids from knee joints (n = 40 for each disease) were measured using ELISA.</p> <p>Results</p> <p>The proteomic approach revealed significantly increased expression of carbonic anhydrase I (CA1) in the synovial membrane of patients with AS as compared with the RA and OA tissue samples. Immunohistochemistry and western blotting analysis confirmed the findings described above. The ELISA detected a higher level of CA1 in synovial fluids from patients with AS than those with OA. The mean value of the CA1 level was also higher in AS patients as compared with RA patients. This study also detected increased expression of alpha-1-antitrypsin in the synovial tissues from AS patients, which is in agreement with other reports.</p> <p>Conclusion</p> <p><it>In vitro </it>experiments by other groups indicated that CA1 catalyzes the generation of HCO<sub>3</sub><sup>- </sup>through the hydration of CO<sub>2</sub>, which then combines with Ca<sup>2+ </sup>to form a CaCO3 precipitate. Calcification is an essential step of bone formation. Substantial evidence indicates that carbonic anhydrase also stimulates bone resorption. Hence, overexpression of CA1 in the synovial tissues of AS patients may promote improper calcification and bone resorption in AS.</p
    • …
    corecore