18 research outputs found

    Genes Required for Growth at High Hydrostatic Pressure in Escherichia coli K-12 Identified by Genome-Wide Screening

    Get PDF
    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure

    Acid-base and metal ion binding properties of 2-thiocytidine in aqueous solution

    Get PDF
    The thionucleoside 2-thiocytidine (C2S) occurs in nature in transfer RNAs; it receives attention in diverse fields like drug research and nanotechnology. By potentiometric pH titrations we measured the acidity constants of H(C2S)(+) and the stability constants of the M(C2S)(2+) and M(C2S-H)(+) complexes (M2+ = Zn2+ , Cd2+), and we compared these results with those obtained previously for its parent nucleoside, cytidine (Cyd). Replacement of the (C2)=O unit by (C2)=S facilitates the release of the proton from (N3)H+ in H(C2S)(+) (pK (a) = 3.44) somewhat, compared with H(Cyd)(+) (pK (a) = 4.24). This moderate effect of about 0.8 pK units contrasts with the strong acidification of about 4 pK units of the (C4)NH2 group in C2S (pK (a) = 12.65) compared with Cyd (pK (a) approximate to 16.7); the reason for this result is that the amino-thione tautomer, which dominates for the neutral C2S molecule, is transformed upon deprotonation into the imino-thioate form with the negative charge largely located on the sulfur. In the M(C2S)(2+) complexes the (C2)S group is the primary binding site rather than N3 as is the case in the M(Cyd)(2+) complexes, though owing to chelate formation N3 is to some extent still involved in metal ion binding. Similarly, in the Zn(C2S-H)(+) and Cd(C2S-H)(+) complexes the main metal ion binding site is the (C2)S- unit (formation degree above 99.99 chelate formation with N3 must be surmised for the M(C2S-H)(+) species in accord with previous solid-state studies of related ligands. Upon metal ion binding, the deprotonation of the (C4)NH2 group (pK(a) = 12.65) is dramatically acidified (pK (a) approximate to 3), confirming the very high stability of the M(C2S-H)(+) complexes. To conclude, the hydrogen-bonding and metal ion complex forming capabilities of C2S differ strongly from those of its parent Cyd; this must have consequences for the properties of those RNAs which contain this thionucleoside

    DNA aptamers against the MUC1 tumour marker: design of aptamer–antibody sandwich ELISA for the early diagnosis of epithelial tumours

    No full text
    Aptamers are functional molecules able to bind tightly and selectively to disease markers, offering great potential for applications in disease diagnosis and therapy. MUC1 is a well-known tumour marker present in epithelial malignancies and is used in immunotherapeutic and diagnostic approaches. We report the selection of DNA aptamers that bind with high affinity and selectivity an MUC1 recombinant protein containing five repeats of the variable tandem repeat region. Aptamers were selected using the SELEX methodology from an initial library containing a 25-base-long variable region for their ability to bind to the unglycosylated form of the MUC1 protein. After ten rounds of in vitro selection and amplification, more than 90% of the pool of sequences consisted of target-binding molecules, which were cloned, sequenced and found to share no sequence consensus. The binding properties of these aptamers were quantified using ELISA and surface plasmon resonance. The lead aptamer sequence was subsequently used in the design of an aptamer–antibody hybrid sandwich ELISA for the identification and quantification of MUC1 in buffered solutions. Following optimisation of the operating conditions, the resulting enzyme immunoassay displayed an EC50 value of 25 μg/ml, a detection limit of 1 μg/ml and a linear range between 8 and 100 μg/ml for the MUC1 five tandem repeat analyte. In addition, recovery studies performed in buffer conditions resulted in averaged recoveries between 98.2 and 101.7% for all spiked samples, demonstrating the usability of the aptamer as a receptor in microtitre-based assays. Our results aim towards the formation of new diagnostic assays against this tumour marker for the early diagnosis of primary or metastatic disease in breast, bladder and other epithelial tumours

    Common thiolation mechanism in the biosynthesis of tRNA thiouridine and sulphur-containing cofactors

    No full text
    2-Thioribothymidine (s2T), a modified uridine, is found at position 54 in transfer RNAs (tRNAs) from several thermophiles; s2T stabilizes the L-shaped structure of tRNA and is essential for growth at higher temperatures. Here, we identified an ATPase (tRNA-two-thiouridine C, TtuC) required for the 2-thiolation of s2T in Thermus thermophilus and examined in vitro s2T formation by TtuC and previously identified s2T-biosynthetic proteins (TtuA, TtuB, and cysteine desulphurases). The C-terminal glycine of TtuB is first activated as an acyl-adenylate by TtuC and then thiocarboxylated by cysteine desulphurases. The sulphur atom of thiocarboxylated TtuB is transferred to tRNA by TtuA. In a ttuC mutant of T. thermophilus, not only s2T, but also molybdenum cofactor and thiamin were not synthesized, suggesting that TtuC is shared among these biosynthetic pathways. Furthermore, we found that a TtuB–TtuC thioester was formed in vitro, which was similar to the ubiquitin-E1 thioester, a key intermediate in the ubiquitin system. The results are discussed in relation to the mechanism and evolution of the eukaryotic ubiquitin system
    corecore