6 research outputs found

    Heavy metals in benthic organisms from Todos os Santos Bay, Brazil

    No full text
    The marine ecosystems of Todos os Santos Bay (TSB, The State of Bahia, Brazil) have been impacted by the presence on its coast of a large metropolitan area as well as of chemical and petrochemical activities. Despite its ecological importance, there is a lack of scientific information concerning metal contamination in TSB marine biota. Thus, we analyzed concentrations of metals in four species of marine benthic organisms (two seaweeds, Padina gymnospora and Sargassum sp. one seagrass, Halodule wrightii and one oyster, Crassostrea rhizophorae) in three sites from the TSB region that have been most affected by industrial activities. The concentrations of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined by Atomic Absorption Spectrophometry. The obtained data indicates that cadmium and copper in seaweeds, oysters and seagrass, as well as Ni concentrations in oysters, were in range of contaminated coastal areas. Cadmium and copper are available to organisms through suspended particles, dissolved fraction of water column and bottom sediment interstitial water. As oysters and other mollusks are used as food sources by the local population, the metal levels found in oysters in TSB may constitute a health risk for this population. Our results suggest implanting a heavy metals biomonitoring program in the TSB marine ecosystems

    Heavy metals in benthic organisms from Todos os Santos Bay, Brazil

    No full text
    The marine ecosystems of Todos os Santos Bay (TSB, The State of Bahia, Brazil) have been impacted by the presence on its coast of a large metropolitan area as well as of chemical and petrochemical activities. Despite its ecological importance, there is a lack of scientific information concerning metal contamination in TSB marine biota. Thus, we analyzed concentrations of metals in four species of marine benthic organisms (two seaweeds, Padina gymnospora and Sargassum sp. one seagrass, Halodule wrightii and one oyster, Crassostrea rhizophorae) in three sites from the TSB region that have been most affected by industrial activities. The concentrations of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined by Atomic Absorption Spectrophometry. The obtained data indicates that cadmium and copper in seaweeds, oysters and seagrass, as well as Ni concentrations in oysters, were in range of contaminated coastal areas. Cadmium and copper are available to organisms through suspended particles, dissolved fraction of water column and bottom sediment interstitial water. As oysters and other mollusks are used as food sources by the local population, the metal levels found in oysters in TSB may constitute a health risk for this population. Our results suggest implanting a heavy metals biomonitoring program in the TSB marine ecosystems

    Assessment of heavy metals in Egretta thula: case study: Coroa Grande mangrove, Sepetiba Bay, Rio de Janeiro, Brazil

    No full text
    This study focuses on metals analysis in kidney and liver tissues of Egretta thula which were collected prostrate or newly dead in Coroa Grande mangrove, Sepetiba Bay, Rio de Janeiro, Brazil, between March 2005 and October 2008. Kidney and liver were collected and analysed to evaluate heavy metal pollution. High values and widest range were detected for all metals in liver and kidney tissues. Geometric mean differences from metals concentrations for Zn, Cd, Ni, Pb, Cu, and Cr, respectively, were found in both organs. Results from linear regression analysis were non-significant in kidney (r = -0.79975, P = 0.10428), and in liver (r = -0.53193, P = 0.35618). With ANOVA analysis for metal accumulation differences (kidney*liver), at the 0.05 level, the results were significantly different (F = 33.17676, P = 0.00000; F = 12.47880, P = 0.00000). These results indicate that Sepetiba Bay shows worrying levels of metals in this study with E. thula, showing potential power of widespread biological and mutagenic adverse effects in trophic levels, and therefore, signalling risk to human health

    Fucus spp. as a mercury contamination bioindicator in costal areas (Northwestern Portugal)

    No full text
    Mercury has been considered as one of the most important pollutants in coastal and estuarine areas. Efforts have been made to detect, as early as possible, the effects of this and other metals in several species. Macroalgae, particularly Fucus spp., have been widely used as biomonitors of metal pollution. In this study, three Fucus species (F. spiralis, F. vesiculosus and F. ceranoides) were collected from several sampling sites in Portugal. The concentrations of mercury were determined in three structural parts (holdfast, stipe and receptacles). Two different techniques were used to determine mercury concentrations. Almost all mercury concentrations (in sediments and in water) were below national and international standards. Mercury concentration in the specimens (0.012-0.061 mu g g(-1) for receptacles, 0.028-0.221 mu g g(-1) for stipe and 0.029-0.287 mu g g(-1) for holdfast) was always higher that those obtained for the sediment (0.001-0.112 mu g g(-1)). With few exceptions the contrary was found for receptacles. In general, a good agreement between concentrations of mercury in sediment and Fucus was found. The results indicate that Fucus accumulate mercury and may be a suitable species for use in risk assessment for coast and estuarine areas, by providing valuable information regarding the levels of mercury that will be available for the consumers of Fucus spp.FCTCONTROL project - PDCTM/C/MAR/15266/199
    corecore