938 research outputs found

    Low infra red laser light irradiation on cultured neural cells: effects on mitochondria and cell viability after oxidative stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considerable interest has been aroused in recent years by the well-known notion that biological systems are sensitive to visible light. With clinical applications of visible radiation in the far-red to near-infrared region of the spectrum in mind, we explored the effect of coherent red light irradiation with extremely low energy transfer on a neural cell line derived from rat pheochromocytoma. We focused on the effect of pulsed light laser irradiation vis-Ă -vis two distinct biological effects: neurite elongation under NGF stimulus on laminin-collagen substrate and cell viability during oxidative stress.</p> <p>Methods</p> <p>We used a 670 nm laser, with extremely low peak power output (3 mW/cm<sup>2</sup>) and at an extremely low dose (0.45 mJ/cm<sup>2</sup>). Neurite elongation was measured over three days in culture. The effect of coherent red light irradiation on cell reaction to oxidative stress was evaluated through live-recording of mitochondria membrane potential (MMP) using JC1 vital dye and laser-confocal microscopy, in the absence (photo bleaching) and in the presence (oxidative stress) of H<sub>2</sub>O<sub>2</sub>, and by means of the MTT cell viability assay.</p> <p>Results</p> <p>We found that laser irradiation stimulates NGF-induced neurite elongation on a laminin-collagen coated substrate and protects PC12 cells against oxidative stress.</p> <p>Conclusion</p> <p>These data suggest that red light radiation protects the viability of cell culture in case of oxidative stress, as indicated by MMP measurement and MTT assay. It also stimulates neurite outgrowth, and this effect could also have positive implications for axonal protection.</p

    Elucidating the Mechanisms of Influenza Virus Recognition by Ncr1

    Get PDF
    Natural killer (NK) cells are innate cytotoxic lymphocytes that specialize in the defense against viral infection and oncogenic transformation. Their action is tightly regulated by signals derived from inhibitory and activating receptors; the later include proteins such as the Natural Cytotoxicity Receptors (NCRs: NKp46, NKp44 and NKp30). Among the NCRs, NKp46 is the only receptor that has a mouse orthologue named Ncr1. NKp46/Ncr1 is also a unique marker expressed on NK and on Lymphoid tissue inducer (LTI) cells and it was implicated in the control of various viral infections, cancer and diabetes. We have previously shown that human NKp46 recognizes viral hemagglutinin (HA) in a sialic acid-dependent manner and that the O-glycosylation is essential for the NKp46 binding to viral HA. Here we studied the molecular interactions between Ncr1 and influenza viruses. We show that Ncr1 recognizes influenza virus in a sialic acid dependent manner and that N-glycosylation is important for this binding. Surprisingly we demonstrate that none of the predicted N-glycosilated residues of Ncr1 are essential for its binding to influenza virus and we thus conclude that other, yet unidentified N-glycosilated residues are responsible for its recognition. We have demonstrated that N glycosylation play little role in the recognition of mouse tumor cell lines and also showed the in-vivo importance of Ncr1 in the control of influenza virus infection by infecting C57BL/6 and BALB/c mice knockout for Ncr1 with influenza

    Quantitative trait locus analysis of hybrid pedigrees: variance-components model, inbreeding parameter, and power

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For the last years reliable mapping of quantitative trait loci (QTLs) has become feasible through linkage analysis based on the variance-components method. There are now many approaches to the QTL analysis of various types of crosses within one population (breed) as well as crosses between divergent populations (breeds). However, to analyse a complex pedigree with dominance and inbreeding, when the pedigree's founders have an inter-population (hybrid) origin, it is necessary to develop a high-powered method taking into account these features of the pedigree.</p> <p>Results</p> <p>We offer a universal approach to QTL analysis of complex pedigrees descended from crosses between outbred parental lines with different QTL allele frequencies. This approach improves the established variance-components method due to the consideration of the genetic effect conditioned by inter-population origin and inbreeding of individuals. To estimate model parameters, namely additive and dominant effects, and the allelic frequencies of the QTL analysed, and also to define the QTL positions on a chromosome with respect to genotyped markers, we used the maximum-likelihood method. To detect linkage between the QTL and the markers we propose statistics with a non-central χ<sup>2</sup>-distribution that provides the possibility to deduce analytical expressions for the power of the method and therefore, to estimate the pedigree's size required for 80% power. The method works for arbitrarily structured pedigrees with dominance and inbreeding.</p> <p>Conclusion</p> <p>Our method uses the phenotypic values and the marker information for each individual of the pedigree under observation as initial data and can be valuable for fine mapping purposes. The power of the method is increased if the QTL effects conditioned by inter-population origin and inbreeding are enhanced. Several improvements can be developed to take into account fixed factors affecting trait formation, such as age and sex.</p

    The genomic evolution of human prostate cancer.

    Get PDF
    Prostate cancers are highly prevalent in the developed world, with inheritable risk contributing appreciably to tumour development. Genomic heterogeneity within individual prostate glands and between patients derives predominantly from structural variants and copy-number aberrations. Subtypes of prostate cancers are being delineated through the increasing use of next-generation sequencing, but these subtypes are yet to be used to guide the prognosis or therapeutic strategy. Herein, we review our current knowledge of the mutational landscape of human prostate cancer, describing what is known of the common mutations underpinning its development. We evaluate recurrent prostate-specific mutations prior to discussing the mutational events that are shared both in prostate cancer and across multiple cancer types. From these data, we construct a putative overview of the genomic evolution of human prostate cancer

    Validity of claims made in weight management research: a narrative review of dietetic articles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The best available evidence demonstrates that conventional weight management has a high long-term failure rate. The ethical implications of continued reliance on an energy deficit approach to weight management are under-explored.</p> <p>Methods</p> <p>A narrative literature review of journal articles in <it>The Journal of Human Nutrition and Dietetics </it>from 2004 to 2008.</p> <p>Results</p> <p>Although the energy deficit approach to weight management has a high long-term failure rate it continues to dominate research in the field. In the current research agenda, controversies and complexities in the evidence base are inadequately discussed, and claims about the likely success of weight management misrepresent available evidence.</p> <p>Conclusions</p> <p>Dietetic literature on weight management fails to meet the standards of evidence based medicine. Research in the field is characterised by speculative claims that fail to accurately represent the available data. There is a corresponding lack of debate on the ethical implications of continuing to promote ineffective treatment regimes and little research into alternative non-weight centred approaches. An alternative health at every size approach is recommended.</p
    • 

    corecore