2,802 research outputs found

    A new bound on axion-like particles

    Get PDF
    Axion-like particles (ALPs) and photons can quantum mechanically interconvert when propagating through magnetic fields, and ALP-photon conversion may induce oscillatory features in the spectra of astrophysical sources. We use deep (370 ks), short frame time Chandra observations of the bright nucleus at the centre of the radio galaxy M87 in the Virgo cluster to search for signatures of light ALPs. The absence of substantial irregularities in the X-ray power-law spectrum leads to a new upper limit on the photon-ALP coupling, gaγg_{a\gamma}: using a conservative model of the cluster magnetic field consistent with Faraday rotation measurements from M87 and M84, we find gaγ<2.6×1012g_{a \gamma} < 2.6\times10^{-12} GeV1^{-1} at 95% confidence level for ALP masses ma1013m_a \leq 10^{-13} eV. Other consistent magnetic field models lead to stronger limits of gaγ1.1g_{a \gamma} \lesssim 1.1--1.5×10121.5 \times 10^{-12} GeV1^{-1}. These bounds are all stronger than the limit inferred from the absence of a gamma-ray burst from SN1987A, and rule out a substantial fraction of the parameter space accessible to future experiments such as ALPS-II and IAXO

    The imprints of AGN feedback within a supermassive black hole's sphere of influence

    Get PDF
    We present a new 300 ks Chandra observation of M87 that limits pileup to only a few per cent of photon events and maps the hot gas properties closer to the nucleus than has previously been possible. Within the supermassive black hole's gravitational sphere of influence, the hot gas is multiphase and spans temperatures from 0.2 to 1 keV. The radiative cooling time of the lowest temperature gas drops to only 0.1-0.5 Myr, which is comparable to its free fall time. Whilst the temperature structure is remarkably symmetric about the nucleus, the density gradient is steep in sectors to the N and S, with ρr1.5±0.1\rho{\propto}r^{-1.5\pm0.1}, and significantly shallower along the jet axis to the E, where ρr0.93±0.07\rho{\propto}r^{-0.93\pm0.07}. The density structure within the Bondi radius is therefore consistent with steady inflows perpendicular to the jet axis and an outflow directed E along the jet axis. By putting limits on the radial flow speed, we rule out Bondi accretion on the scale resolved at the Bondi radius. We show that deprojected spectra extracted within the Bondi radius can be equivalently fit with only a single cooling flow model, where gas cools from 1.5 keV down below 0.1 keV at a rate of 0.03 M_{\odot}/yr. For the alternative multi-temperature spectral fits, the emission measures for each temperature component are also consistent with a cooling flow model. The lowest temperature and most rapidly cooling gas in M87 is therefore located at the smallest radii at ~100 pc and may form a mini cooling flow. If this cooling gas has some angular momentum, it will feed into the cold gas disk around the nucleus, which has a radius of ~80 pc and therefore lies just inside the observed transition in the hot gas structure

    Warping of Saturn's magnetospheric and magnetotail current sheets

    Get PDF
    The magnetotails of Jupiter and Earth are known to be hinged so that their orientation is controlled by the magnetic field of the planet at small distances and asymptotically approach the direction of the flow of the solar wind at large distances. In this paper we present Cassini observations showing that Saturn's magnetosphere is also similarly hinged. Furthermore, we find that Saturn's magnetosphere is not only hinged in the tail but also on the dayside, in contrast to the Jovian and terrestrial magnetospheres. Over the midnight, dawn, and noon local time sectors we find that the current sheet is displaced above Saturn's rotational equator, and thus the current sheet adopts the shape of a bowl or basin. We present a model to describe the warped current sheet geometry and show that in order to properly describe the magnetic field in the magnetosphere, this hinging must be incorporated. We discuss the impact on plasma observations made in Saturn's equatorial plane, the influence on Titan's magnetospheric interaction, and the effect of periodicities on the mean current sheet structure

    Mass of Saturn's magnetodisc: Cassini observations

    Get PDF
    Saturn's ring current was observed by Pioneer 11 and the two Voyager spacecraft to extend 8 - 16 R-S in the equatorial plane and appeared to be driven by stress balance with the centrifugal force. We present Cassini observations that show thin current sheets on the dawn flank of Saturn's magnetosphere, symptomatic of the formation of a magnetodisc. We show that the centrifugal force is the dominant mechanical stress in these current sheets, which reinforces a magnetodisc interpretation - the formation of the current sheet is fundamentally rotational in origin. The stress balance calculation is also used to estimate the mass density in the disc, which show good agreement with independent in-situ measurements of the density. We estimate the total mass in the magnetodisc to be similar to 10(6) kg

    AGN feedback in the Phoenix cluster

    Get PDF
    Active galactic nuclei (AGN) release a huge amount of energy into the intracluster medium (ICM) with the consequence of offsetting cooling and star formation (AGN feedback) in the centers of cool core clusters. The Phoenix cluster is among the most massive clusters of galaxies known in the Universe. It hosts a powerful starburst of several hundreds of Solar masses per year and a large amount of molecular gas in the center. In this work we use the high-resolution Reflection Grating Spectrometer (RGS) on board XMM-Newton to study the X-ray emitting cool gas in the Phoenix cluster and heating-cooling balance. We detect for the first time evidence of O VIII and Fe XXI-XXII emission lines, the latter demonstrating the presence of gas below 2 keV. We find a cooling rate of 350 (-200,+250) Msun/year below 2 keV (at the 90% confidence level), which is consistent with the star formation rate in this object. This cooling rate is high enough to produce the molecular gas found in the filaments via instabilities during the buoyant rising time. The line broadening indicates that the turbulence (~ 300 km/s or less) is below the level required to produce and propagate the heat throughout the cool core. This provides a natural explanation to the coexistence of large amounts of cool gas, star formation and a powerful AGN in the core. The AGN activity may be either at a young stage or in a different feedback mode, due to a high accretion rate

    Fitness benefits of prolonged post-reproductive lifespan in women

    Get PDF
    Most animals reproduce until they die, but in humans, females can survive long after ceasing reproduction. In theory, a prolonged post-reproductive lifespan will evolve when females can gain greater fitness by increasing the success of their offspring than by continuing to breed themselves. Although reproductive success is known to decline in old age, it is unknown whether women gain fitness by prolonging lifespan post-reproduction. Using complete multi-generational demographic records, we show that women with a prolonged post-reproductive lifespan have more grandchildren, and hence greater fitness, in pre-modern populations of both Finns and Canadians. This fitness benefit arises because post-reproductive mothers enhance the lifetime reproductive success of their offspring by allowing them to breed earlier, more frequently and more successfully. Finally, the fitness benefits of prolonged lifespan diminish as the reproductive output of offspring declines. This suggests that in female humans, selection for deferred ageing should wane when one's own offspring become post-reproductive and, correspondingly, we show that rates of female mortality accelerate as their offspring terminate reproduction

    Agency, qualia and life: connecting mind and body biologically

    Get PDF
    Many believe that a suitably programmed computer could act for its own goals and experience feelings. I challenge this view and argue that agency, mental causation and qualia are all founded in the unique, homeostatic nature of living matter. The theory was formulated for coherence with the concept of an agent, neuroscientific data and laws of physics. By this method, I infer that a successful action is homeostatic for its agent and can be caused by a feeling - which does not motivate as a force, but as a control signal. From brain research and the locality principle of physics, I surmise that qualia are a fundamental, biological form of energy generated in specialized neurons. Subjectivity is explained as thermodynamically necessary on the supposition that, by converting action potentials to feelings, the neural cells avert damage from the electrochemical pulses. In exchange for this entropic benefit, phenomenal energy is spent as and where it is produced - which precludes the objective observation of qualia

    Associations of hippocampal subfields in the progression of cognitive decline related to Parkinson's disease.

    Get PDF
    OBJECTIVE: Hippocampal atrophy has been associated with mild cognitive impairment (MCI) in Parkinson's disease (PD). However, literature on how hippocampal atrophy affects the pathophysiology of cognitive impairment in PD has been limited. Previous studies assessed the hippocampus as an entire entity instead of their individual subregions. We studied the progression of cognitive status in PD subjects over 18 in relation to hippocampal subfields atrophy. METHODS: 65 PD subjects were included. Using the MDS task force criteria, PD subjects were classified as either having no cognitive impairment (PD-NCI) or PD-MCI. We extended the study by investigating the hippocampal subfields atrophy patterns in those who converted from PD-NCI to PD-MCI (PD-converters) compared to those who remained cognitively stable (PD-stable) over 18 months. Freesurfer 6.0 was used to perform the automated segmentation of the hippocampus into thirteen subregions. RESULTS: PD-MCI showed lower baseline volumes in the left fimbria, right CA1, and right HATA; and lower global cognition scores compared to PD-NCI. Baseline right CA1 was also correlated with baseline attention. Over 18 months, decline in volumes of CA2-3 and episodic memory were also seen in PD-converters compared to PD-stable. Baseline volumes of GC-DG, right CA4, left parasubiculum, and left HATA were predictive of the conversion from PD-NCI to PD-MCI. CONCLUSION: The findings from this study add to the anatomical knowledge of hippocampal subregions in PD, allowing us to understand the unique functional contribution of each subfield. Structural changes in the hippocampus subfields could be early biomarkers to detect cognitive impairment in PD
    corecore