44 research outputs found

    Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats

    Get PDF
    Acetylcholine (ACh), the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR) have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). Previous reports from our laboratory on streptozotocin (STZ) induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE) enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax) of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax) and affinity (Kd) of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors

    Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A

    Get PDF
    <p>Abstact</p> <p>Background</p> <p>Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue.</p> <p>Methods</p> <p>In the present study, alterations of the general GABA, GABA<sub>A </sub>and GABA<sub>B </sub>receptors in the cerebral cortex of the epileptic rat and the therapeutic application of <it>Bacopa monnieri </it>were investigated.</p> <p>Results</p> <p>Scatchard analysis of [<sup>3</sup>H]GABA, [<sup>3</sup>H]bicuculline and [<sup>3</sup>H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in B<sub>max </sub>(P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABA<sub>Aά1</sub>, GABA<sub>Aγ</sub>, GABA<sub>Aδ</sub>, GABA<sub>B </sub>and GAD where down regulated (P < 0.001) in epileptic rats. GABA<sub>Aά5 </sub>subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance.</p> <p>Conclusions</p> <p><it>Bacopa monnieri </it>and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; <it>Bacopa monnieri </it>and Bacoside-A have therapeutic application in epilepsy management.</p

    Curcumin modulates dopaminergic receptor, CREB and phospholipase c gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats

    Get PDF
    Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, Bmax showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes

    Enhanced glutamate, IP3 and cAMP activity in the cerebral cortex of Unilateral 6-hydroxydopamine induced Parkinson's rats: Effect of 5-HT, GABA and bone marrow cell supplementation

    Get PDF
    Parkinson's disease is characterized by progressive cell death in the substantia nigra pars compacta, which leads to dopamine depletion in the striatum and indirectly to cortical dysfunction. Increased glutamatergic transmission in the basal ganglia is implicated in the pathophysiology of Parkinson's disease and glutamate receptor mediated excitotoxicity has been suggested to be one of the possible causes of the neuronal degeneration. In the present study, the effects of serotonin, gamma-aminobutyric acid and bone marrow cells infused intranigrally to substantia nigra individually and in combination on unilateral 6-hydroxydopamine induced Parkinson's rat model was analyzed. Scatchard analysis of total glutamate and NMDA receptor binding parameters showed a significant increase in Bmax (P < 0.001) in the cerebral cortex of 6-hydroxydopamine infused rat compared to control. Real Time PCR amplification of NMDA2B, mGluR5, bax, and ubiquitin carboxy-terminal hydrolase were up regulated in cerebral cortex of 6-hydroxydopamine infused rats compared to control. Gene expression studies of GLAST, ά-Synuclien and Cyclic AMP response element-binding protein showed a significant (P < 0.001) down regulation in 6-OHDA infused rats compared to control. Behavioural studies were carried out to confirm the biochemical and molecular studies. Serotonin and GABA along with bone marrow cells in combination showed reversal of glutamate receptors and behaviour abnormality shown in the Parkinson's rat model. The therapeutic significance in Parkinson's disease is of prominence

    Alterations in hippocampal serotonergic and INSR function in streptozotocin induced diabetic rats exposed to stress: neuroprotective role of pyridoxine and Aegle marmelose

    Get PDF
    Diabetes and stress stimulate hippocampal 5-HT synthesis, metabolism and release. The present study was carried out to find the effects of insulin, Aegle marmelose alone and in combination with pyridoxine on the hippocampal 5-HT, 5-HT2A receptor subtype, gene expression studies on 5-HT2A, 5-HTT, INSR, immunohistochemical studies and elevated plus maze in streptozotocin induced diabetic rats. 5-HT content showed a significant decrease (p < 0.001) and a significant increase (p < 0.001) in 5-HIAA in hippocampus of diabetic rats compared to control. 5-HT receptor binding parameters Bmax and Kd showed a significant decrease (p < 0.001) whereas 5-HT2A receptor binding parameters Bmax showed a significant decrease (p < 0.001) with a significant increase (p < 0.05) in Kd in hippocampus of diabetic rats compared to control. Gene expression studies of 5-HT2A, 5-HTT and INSR in hippocampus showed a significant down regulation (p < 0.001) in diabetic rats compared to control. Pyridoxine treated in combination with insulin and A. marmelose to diabetic rats reversed the 5-HT content, Bmax , Kd of 5-HT, 5-HT2A and gene expression of 5-HT2A, 5-HTT and INSR in hippocampus to near control. The gene expression of 5-HT2A and 5-HTT were confirmed by immunohistochemical studies. Behavioural studies using elevated plus maze showed that serotonin through its transporter significantly increased (p < 0.001) anxiety-related traits in diabetic rats which were corrected by combination therapy. Our results suggest that pyridoxine treated in combination with insulin and A. marmelose has a role in the regulation of insulin synthesis and release, normalising diabetic related stress and anxiety through hippocampal serotonergic function. This has clinical significance in the management of diabetes

    A Quaternary ZnCdSeTe Nanotip Photodetector

    Get PDF
    The authors report the growth of needle-like high density quaternary Zn0.87Cd0.13Se0.98Te0.02nanotips on oxidized Si(100) substrate. It was found that average length and average diameter of the nanotips were 1.3 μm and 91 nm, respectively. It was also found that the as-grown ZnCdSeTe nanotips exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. Furthermore, it was found that the operation speeds of the fabricated ZnCdSeTe nanotip photodetector were fast with turn-on and turn-off time constants both less than 2 s

    An alternative route for the synthesis of silicon nanowires via porous anodic alumina masks

    Get PDF
    Amorphous Si nanowires have been directly synthesized by a thermal processing of Si substrates. This method involves the deposition of an anodic aluminum oxide mask on a crystalline Si (100) substrate. Fe, Au, and Pt thin films with thicknesses of ca. 30 nm deposited on the anodic aluminum oxide-Si substrates have been used as catalysts. During the thermal treatment of the samples, thin films of the metal catalysts are transformed in small nanoparticles incorporated within the pore structure of the anodic aluminum oxide mask, directly in contact with the Si substrate. These homogeneously distributed metal nanoparticles are responsible for the growth of Si nanowires with regular diameter by a simple heating process at 800°C in an Ar-H2 atmosphere and without an additional Si source. The synthesized Si nanowires have been characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman

    The Inflammatory Kinase MAP4K4 Promotes Reactivation of Kaposi's Sarcoma Herpesvirus and Enhances the Invasiveness of Infected Endothelial Cells

    Get PDF
    Kaposi's sarcoma (KS) is a mesenchymal tumour, which is caused by Kaposi's sarcoma herpesvirus (KSHV) and develops under inflammatory conditions. KSHV-infected endothelial spindle cells, the neoplastic cells in KS, show increased invasiveness, attributed to the elevated expression of metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). The majority of these spindle cells harbour latent KSHV genomes, while a minority undergoes lytic reactivation with subsequent production of new virions and viral or cellular chemo- and cytokines, which may promote tumour invasion and dissemination. In order to better understand KSHV pathogenesis, we investigated cellular mechanisms underlying the lytic reactivation of KSHV. Using a combination of small molecule library screening and siRNA silencing we found a STE20 kinase family member, MAP4K4, to be involved in KSHV reactivation from latency and to contribute to the invasive phenotype of KSHV-infected endothelial cells by regulating COX-2, MMP-7, and MMP-13 expression. This kinase is also highly expressed in KS spindle cells in vivo. These findings suggest that MAP4K4, a known mediator of inflammation, is involved in KS aetiology by regulating KSHV lytic reactivation, expression of MMPs and COX-2, and, thereby modulating invasiveness of KSHV-infected endothelial cells. © 2013 Haas et al

    Glutamate (mGluR-5) gene expression in brain regions of streptozotocin induced diabetic rats as a function of age: role in regulation of calcium release from the pancreatic islets <it>in vitro</it>

    No full text
    Abstract Metabotrophic glutamate receptors (mGluRs) modulate cellular activities involved in the processes of differentiation and degeneration. In this study, we have analysed the expression pattern of group-I metabotropic glutamate receptor (mGlu-5) in cerebral cortex, corpus striatum, brainstem and hippocampus of streptozotocin induced and insulin treated diabetic rats (D+I) as a function of age. Also, the functional role of glutamate receptors in intra cellular calcium release from the pancreatic islets was studied in vitro. The gene expression studies showed that mGlu-5 mRNA in the cerebral cortex increased siginficantly in 7 weeks old diabetic rats whereas decreased expression was observed in brainstem, corpus striatum and hippocampus when compared to control. 90 weeks old diabetic rats showed decreased expression in cerebral cortex, corpus striatum and hippocampus whereas in brainstem the expression increased significantly compared to their respective controls. In 7 weeks old D+I group, mGlu-5 mRNA expression was significantly decreased in cerebral cortex and corpus striatum whereas the expression increased significantly in brainstem and hippocampus. 90 weeks old D+I group showed an increased expression in cerebral cortex, while it was decreased significantly in corpus striatum, brainstem and hippocampus compared to their respective controls. In vitro studies showed that glutamate at lower concentration (10-7 M) stimulated calcium release from the pancreatic islets. Our results suggest that mGlu-5 receptors have differential expression in brain regions of diabetes and D+I groups as a function of age. This will have clinical significance in management of degeneration in brain function and memory enhancement through glutamate receptors. Also, the regulatory role of glutamate receptors in calcium release has immense therapeutic application in insulin secretion and function.</p

    Glutamate (mGluR-5) gene expression in brain regions of streptozotocin induced diabetic rats as a function of age: role in regulation of calcium release from the pancreatic islets in vitro

    No full text
    Metabotrophic glutamate receptors (mGluRs) modulate cellular activities involved in the processes of differentiation and degeneration. In this study, we have analysed the expression pattern of group-I metabotropic glutamate receptor (mGlu-5) in cerebral cortex, corpus striatum, brainstem and hippocampus of streptozotocin induced and insulin treated diabetic rats (D+I) as a function of age. Also, the functional role of glutamate receptors in intra cellular calcium release from the pancreatic islets was studied in vitro. The gene expression studies showed that mGlu-5 mRNA in the cerebral cortex increased siginficantly in 7 weeks old diabetic rats whereas decreased expression was observed in brainstem, corpus striatum and hippocampus when compared to control. 90 weeks old diabetic rats showed decreased expression in cerebral cortex, corpus striatum and hippocampus whereas in brainstem the expression increased significantly compared to their respective controls. In 7 weeks old D+I group, mGlu-5 mRNA expression was significantly decreased in cerebral cortex and corpus striatum whereas the expression increased significantly in brainstem and hippocampus. 90 weeks old D+I group showed an increased expression in cerebral cortex, while it was decreased significantly in corpus striatum, brainstem and hippocampus compared to their respective controls. In vitro studies showed that glutamate at lower concentration (10(-7 )M) stimulated calcium release from the pancreatic islets. Our results suggest that mGlu-5 receptors have differential expression in brain regions of diabetes and D+I groups as a function of age. This will have clinical significance in management of degeneration in brain function and memory enhancement through glutamate receptors. Also, the regulatory role of glutamate receptors in calcium release has immense therapeutic application in insulin secretion and function
    corecore