33 research outputs found

    Intensity modulated radiotherapy (IMRT) in patients with carcinomas of the paranasal sinuses: clinical benefit for complex shaped target volumes

    Get PDF
    INTRODUCTION: The aim of the study was to evaluate the clinical outcome of intensity modulated radiotherapy (IMRT) in 46 patients with paranasal sinus tumors with special respect to treatment-related toxicity. PATIENTS AND METHODS: We treated 46 patients with histologically proven tumors of the paranasal sinuses with IMRT. Histological classification included squamous cell carcinoma in 6, adenocarcinoma in 8, adenoidcystic carcinoma in 20 and melanoma in 8 patients, respectively. Six patients had been treated with RT during initial therapy after primary diagnosis, and IMRT was performed for the treatment of tumor progression as re-irradiation. RESULTS: Overall survival rates were 96% at 1 year, 90% at 3 years. Calculated from the initiation of IMRT as primary radiotherapy, survival rates at 1 and 3 years were 95% and 80%. In six patients IMRT was performed as re-irradiation, and survival rate calculated from re-irradiation was 63% at 1 year. Local control rates were 85% at 1, 81% at 2 and 49% at 3 years after primary RT and 50% at 1 year after re-irradiation. Distant metastases-free survival in patients treated with IMRT as primary RT was 83% after 1 and 64% after 3 years. For patients treated as primary irradiation with IMRT, the distant control rate was 83% at 1 year and 0% at 2 years. No severe radiation-induced side-effects could be observed. CONCLUSION: IMRT for tumors of the paranasal sinuses is associated with very good tumor control rates. Treatment-related acute and long-term toxicity can be minimized as compared to historical results with conventional RT

    Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals

    Get PDF
    The diversity, ubiquity and prevalence in deep waters of the octocoral family Chrysogorgiidae Verrill, 1883 make it noteworthy as a model system to study radiation and diversification in the deep sea. Here we provide the first comprehensive phylogenetic analysis of the Chrysogorgiidae, and compare phylogeny and depth distribution. Phylogenetic relationships among 10 of 14 currently-described Chrysogorgiidae genera were inferred based on mitochondrial (mtMutS, cox1) and nuclear (18S) markers. Bathymetric distribution was estimated from multiple sources, including museum records, a literature review, and our own sampling records (985 stations, 2345 specimens). Genetic analyses suggest that the Chrysogorgiidae as currently described is a polyphyletic family. Shallow-water genera, and two of eight deep-water genera, appear more closely related to other octocoral families than to the remainder of the monophyletic, deep-water chrysogorgiid genera. Monophyletic chrysogorgiids are composed of strictly (Iridogorgia Verrill, 1883, Metallogorgia Versluys, 1902, Radicipes Stearns, 1883, Pseudochrysogorgia Pante & France, 2010) and predominantly (Chrysogorgia Duchassaing & Michelotti, 1864) deep-sea genera that diversified in situ. This group is sister to gold corals (Primnoidae Milne Edwards, 1857) and deep-sea bamboo corals (Keratoisidinae Gray, 1870), whose diversity also peaks in the deep sea. Nine species of Chrysogorgia that were described from depths shallower than 200 m, and mtMutS haplotypes sequenced from specimens sampled as shallow as 101 m, suggest a shallow-water emergence of some Chrysogorgia species
    corecore