858 research outputs found

    A Perturbation Method for Inverse Scattering in Three-Dimensions Based on the Exact Inverse Scattering Equations

    Get PDF
    The detection and characterization of macroscopic flaws, such as cracks in solids are fundamental goals of nondestructive evaluation. Many inspection methods use scattered electromagnetic or ultrasonic waves. These methods rely explicitly on the development of inverse scattering theory. This theory seeks to determine the geometrical and material properties of flaws from scattering data

    Associations between Sleep Quality and Heart Rate Variability: Implications for a Biological Model of Stress Detection Using Wearable Technology.

    Get PDF
    INTRODUCTION: The autonomic nervous system plays a vital role in the modulation of many vital bodily functions, one of which is sleep and wakefulness. Many studies have investigated the link between autonomic dysfunction and sleep cycles; however, few studies have investigated the links between short-term sleep health, as determined by the Pittsburgh Quality of Sleep Index (PSQI), such as subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication, and daytime dysfunction, and autonomic functioning in healthy individuals. AIM: In this cross-sectional study, the aim was to investigate the links between short-term sleep quality and duration, and heart rate variability in 60 healthy individuals, in order to provide useful information about the effects of stress and sleep on heart rate variability (HRV) indices, which in turn could be integrated into biological models for wearable devices. METHODS: Sleep parameters were collected from participants on commencement of the study, and HRV was derived using an electrocardiogram (ECG) during a resting and stress task (Trier Stress Test). RESULT: Low-frequency to high-frequency (LF:HF) ratio was significantly higher during the stress task than during the baseline resting phase, and very-low-frequency and high-frequency HRV were inversely related to impaired sleep during stress tasks. CONCLUSION: Given the ubiquitous nature of wearable technologies for monitoring health states, in particular HRV, it is important to consider the impacts of sleep states when using these technologies to interpret data. Very-low-frequency HRV during the stress task was found to be inversely related to three negative sleep indices: sleep quality, daytime dysfunction, and global sleep score

    Stress Watch: The Use of Heart Rate and Heart Rate Variability to Detect Stress: A Pilot Study Using Smart Watch Wearables.

    Full text link
    Stress is an inherent part of the normal human experience. Although, for the most part, this stress response is advantageous, chronic, heightened, or inappropriate stress responses can have deleterious effects on the human body. It has been suggested that individuals who experience repeated or prolonged stress exhibit blunted biological stress responses when compared to the general population. Thus, when assessing whether a ubiquitous stress response exists, it is important to stratify based on resting levels in the absence of stress. Research has shown that stress that causes symptomatic responses requires early intervention in order to mitigate possible associated mental health decline and personal risks. Given this, real-time monitoring of stress may provide immediate biofeedback to the individual and allow for early self-intervention. This study aimed to determine if the change in heart rate variability could predict, in two different cohorts, the quality of response to acute stress when exposed to an acute stressor and, in turn, contribute to the development of a physiological algorithm for stress which could be utilized in future smartwatch technologies. This study also aimed to assess whether baseline stress levels may affect the changes seen in heart rate variability at baseline and following stress tasks. A total of 30 student doctor participants and 30 participants from the general population were recruited for the study. The Trier Stress Test was utilized to induce stress, with resting and stress phase ECGs recorded, as well as inter-second heart rate (recorded using a FitBit). Although the present study failed to identify ubiquitous patterns of HRV and HR changes during stress, it did identify novel changes in these parameters between resting and stress states. This study has shown that the utilization of HRV as a measure of stress should be calculated with consideration of resting (baseline) anxiety and stress states in order to ensure an accurate measure of the effects of additive acute stress

    The relationship between neurocognitive performance and HRV parameters in nurses and non-healthcare participants.

    Full text link
    Nurses represent the largest sector of the healthcare workforce, and it is established that they are faced with ongoing physical and mental demands that leave many continuously stressed. In turn, this chronic stress may affect cardiac autonomic activity, which can be non-invasively evaluated using heart rate variability (HRV). The association between neurocognitive parameters during acute stress situations and HRV has not been previously explored in nurses compared to non-nurses and such, our study aimed to assess these differences. Neurocognitive data were obtained using the Mini-Mental State Examination and Cognistat psychometric questionnaires. ECG-derived HRV parameters were acquired during the Trier Social Stress Test. Between-group differences were found in domain-specific cognitive performance for the similarities (p = .03), and judgment (p = .002) domains and in the following HRV parameters: SDNNbaseline, (p = .004), LFpreparation (p = .002), SDNNpreparation (p = .002), HFpreparation (p = .02), and TPpreparation (p = .003). Negative correlations were found between HF power and domain-specific cognitive performance in nurses. In contrast, both negative and positive correlations were found between HRV and domain-specific cognitive performance in the non-nurse group. The current findings highlight the prospective use of autonomic HRV markers in relation to cognitive performance while building a relationship between autonomic dysfunction and cognition

    The Milky Way's total satellite population and constraining the mass of the warm dark matter particle

    Get PDF
    The Milky Way’s (MW) satellite population is a powerful probe of warm dark matter (WDM) models as the abundance of small substructures is very sensitive to the properties of the WDM particle. However, only a partial census of the MW’s complement of satellite galaxies exists because surveys of the MW’s close environs are incomplete both in depth and in sky coverage. We present a new Bayesian analysis that combines the sample of satellites recently discovered by the Dark Energy Survey (DES) with those found in the Sloan Digital Sky Survey (SDSS) to estimate the total satellite galaxy luminosity function down to Mv = 0. We find that there should be at least 124+40−27124−27+40 (68% CL, statistical error) satellites as bright or brighter than Mv = 0 within 300 kpc of the Sun, with only a weak dependence on MW halo mass. When it comes online the Large Synoptic Survey Telescope should detect approximately half of this population. We also show that WDM models infer the same number of satellites as in ΛCDM, which will allow us to rule out those models that produce insufficient substructure to be viable

    Classifying multi-level stress responses from brain cortical EEG in Nurses and Non-health professionals using Machine Learning Auto Encoder

    Get PDF
    ObjectiveMental stress is a major problem in our society and has become an area of interest for many psychiatric researchers. One primary research focus area is the identification of bio-markers that not only identify stress but also predict the conditions (or tasks) that cause stress. Electroencephalograms (EEGs) have been used for a long time to study and identify bio-markers. While these bio-markers have successfully predicted stress in EEG studies for binary conditions, their performance is suboptimal for multiple conditions of stress.MethodsTo overcome this challenge, we propose using latent based representations of the bio-markers, which have been shown to significantly improve EEG performance compared to traditional bio-markers alone. We evaluated three commonly used EEG based bio-markers for stress, the brain load index (BLI), the spectral power values of EEG frequency bands (alpha, beta and theta), and the relative gamma (RG), with their respective latent representations using four commonly used classifiers.ResultsThe results show that spectral power value based bio-markers had a high performance with an accuracy of 83%, while the respective latent representations had an accuracy of 91%
    • …
    corecore