23 research outputs found

    ZIC1 Is Downregulated through Promoter Hypermethylation, and Functions as a Tumor Suppressor Gene in Colorectal Cancer

    Get PDF
    The transcription factor, Zinc finger of the cerebellum (ZIC1), plays a crucial role in vertebrate development. Recently, ZIC1 has also been found to participate in the progression of human cancers, including medulloblastomas, endometrial cancers, and mesenchymal neoplasms. However, the function of ZIC1 in colon cancer progression has not been defined. In this study, we demonstrate ZIC1 to be silenced or significantly downregulated in colon cancer cell lines. These effects were reversed by demethylation treatment with 5-aza-2′-deoxycytidine (Aza). ZIC1 expression is also significantly downregulated in primary colorectal cancer tissues relative to adjacent non-tumor tissues (p = 0.0001). Furthermore, methylation of ZIC1 gene promoter is frequently detected in primary tumor tissues (85%, 34/40), but not in adjacent non-tumor tissues. Ectopic expression of ZIC1 suppresses cell proliferation and induces apoptosis, which is associated with MAPK and PI3K/Akt pathways, as well as the Bcl-xl/Bad/Caspase3 cascade. To identify target candidates of ZIC1, we employed cDNA microarray and found that 337 genes are downregulated and 95 genes upregulated by ectopic expression of ZIC1, which were verified by 10 selected gene expressions by qRT-PCR. Taken together, our results suggest that ZIC1 may potentially function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in colorectal cancers

    Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability

    Get PDF
    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5–12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded

    Sexual Phenotype Differences in zic2 mRNA Abundance in the Preoptic Area of a Protogynous Teleost, Thalassoma bifasciatum

    Get PDF
    The highly conserved members of the zic family of zinc-finger transcription factors are primarily known for their roles in embryonic signaling pathways and regulation of cellular proliferation and differentiation. This study describes sexual phenotype differences in abundances of zic2 mRNA in the preoptic area of the hypothalamus, a region strongly implicated in sexual behavior and function, in an adult teleost, Thalassoma bifasciatum. The bluehead wrasse (Thalassoma bifasciatum) is a valuable model for studying neuroendocrine processes because it displays two discrete male phenotypes, initial phase (IP) males and territorial, terminal phase (TP) males, and undergoes socially-controlled protogynous sex change. Previously generated microarray-based comparisons suggested that zic2 was upregulated in the brains of terminal phase males relative to initial phase males. To further explore this difference, we cloned a 727 bp sequence for neural zic2 from field-collected animals. Riboprobe-based in situ hybridization was employed to localize zic2 signal in adult bluehead brains and assess the relative abundance of brain zic2 mRNA across sexual phenotypes. We found zic2 mRNA expression was extremely abundant in the granular cells of the cerebellum and widespread in other brain regions including in the thalamus, hypothalamus, habenula, torus semicircularis, torus longitudinalis, medial longitudinal fascicle and telencephalic areas. Quantitative autoradiography and phosphorimaging showed zic2 mRNA hybridization signal in the preoptic area of the hypothalamus was significantly higher in terminal phase males relative to both initial phase males and females, and silver grain analysis confirmed this relationship between phenotypes. No significant difference in abundance was found in zic2 signal across phenotypes in the habenula, a brain region not implicated in the control of sexual behavior, or cerebellum

    Role of BMP, FGF, Calcium Signaling, and Zic Proteins in Vertebrate Neuroectodermal Differentiation

    Get PDF
    More than a decade has passed since Zic family zinc finger proteins were discovered to be transcription factors controlling neuroectodermal differentiation (neural induction) in Xenopus laevis embryos. Although BMP-signal blocking has been shown to be a major upregulator of Zic genes in neuroectodermal differentiation, recent studies have revealed that FGF signaling and intracellular calcium elevation are also involved in regulating the expression of Zic genes. Different regulatory mechanisms have been found for the Zic1 and Zic3 genes, raising the possibility that functional synergism between them partly accounts for the integration of BMP-signal blocking and FGF signaling in neuroectodermal differentiation. Furthermore, mammalian Zic1 and Zic3 have been found to be neural-cell-fate-inducing and pluripotency-maintaining factors, respectively, leading us to the intriguing question of whether the mechanism underlying amphibian neuroectodermal differentiation is applicable to mammals. Comprehensive understanding of the Zic family genes is therefore essential for the study of the neuroectodermal differentiation and stem cell biology

    Zic2 hypomorphic mutant mice as a schizophrenia model and ZIC2 mutations identified in schizophrenia patients

    Get PDF
    ZIC2 is a causal gene for holoprosencephaly and encodes a zinc-finger-type transcriptional regulator. We characterized Zic2kd/+ mice with a moderate (40%) reduction in Zic2 expression. Zic2kd/+ mice showed increased locomotor activity in novel environments, cognitive and sensorimotor gating dysfunctions, and social behavioral abnormalities. Zic2kd/+ brain involved enlargement of the lateral ventricle, thinning of the cerebral cortex and corpus callosum, and decreased number of cholinergic neurons in the basal forebrain. Because these features are reminiscent of schizophrenia, we examined ZIC2 variant-carrying allele frequencies in schizophrenia patients and in controls in the Japanese population. Among three novel missense mutations in ZIC2, R409P was only found in schizophrenia patients, and was located in a strongly conserved position of the zinc finger domain. Mouse Zic2 with the corresponding mutation showed lowered transcription-activating capacity and had impaired target DNA-binding and co-factor-binding capacities. These results warrant further study of ZIC2 in the pathogenesis of schizophrenia

    Low Frequency Vibrations Disrupt Left-Right Patterning in the Xenopus Embryo

    Get PDF
    The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs

    CAMOS, a nonprogressive, autosomal recessive, congenital cerebellar ataxia, is caused by a mutant zinc-finger protein, ZNF592

    No full text
    CAMOS (Cerebellar Ataxia with Mental retardation, Optic atrophy and Skin abnormalities) is a rare autosomal recessive syndrome characterized by a nonprogressive congenital cerebellar ataxia associated with mental retardation, optic atrophy, and skin abnormalities. Using homozygosity mapping in a large inbred Lebanese Druze family, we previously reported the mapping of the disease gene at chromosome 15q24–q26 to a 3.6-cM interval between markers D15S206 and D15S199. Screening of candidate genes lying in this region led to the identification of a homozygous p.Gly1046Arg missense mutation in ZNF592, in all five affected individuals of the family. ZNF592 encodes a 1267-amino-acid zinc-finger (ZnF) protein, and the mutation, located within the eleventh ZnF, is predicted to affect the DNA-binding properties of ZNF592. Although the precise role of ZNF592 remains to be determined, our results suggest that ZNF592 is implicated in a complex developmental pathway, and that the mutation is likely to disturb the highly orchestrated regulation of genes during cerebellar development, by either disrupting interactions with target DNA or with a partner protein
    corecore