5 research outputs found

    Knockdown of the Drosophila Fused in Sarcoma (FUS) Homologue Causes Deficient Locomotive Behavior and Shortening of Motoneuron Terminal Branches

    Get PDF
    Mutations in the fused in sarcoma/translated in liposarcoma gene (FUS/TLS, FUS) have been identified in sporadic and familial forms of amyotrophic lateral sclerosis (ALS). FUS is an RNA-binding protein that is normally localized in the nucleus, but is mislocalized to the cytoplasm in ALS, and comprises cytoplasmic inclusions in ALS-affected areas. However, it is still unknown whether the neurodegeneration that occurs in ALS is caused by the loss of FUS nuclear function, or by the gain of toxic function due to cytoplasmic FUS aggregation. Cabeza (Caz) is a Drosophila orthologue of human FUS. Here, we generated Drosophila models with Caz knockdown, and investigated their phenotypes. In wild-type Drosophila, Caz was strongly expressed in the central nervous system of larvae and adults. Caz did not colocalize with a presynaptic marker, suggesting that Caz physiologically functions in neuronal cell bodies and/or their axons. Fly models with neuron-specific Caz knockdown exhibited reduced climbing ability in adulthood and anatomical defects in presynaptic terminals of motoneurons in third instar larvae. Our results demonstrated that decreased expression of Drosophila Caz is sufficient to cause degeneration of motoneurons and locomotive disability in the absence of abnormal cytoplasmic Caz aggregates, suggesting that the pathogenic mechanism underlying FUS-related ALS should be ascribed more to the loss of physiological FUS functions in the nucleus than to the toxicity of cytoplasmic FUS aggregates. Since the Caz-knockdown Drosophila model we presented recapitulates key features of human ALS, it would be a suitable animal model for the screening of genes and chemicals that might modify the pathogenic processes that lead to the degeneration of motoneurons in ALS

    Deregulation of kinase signaling and lymphoid development in EBF1-PDGFRB ALL leukemogenesis

    No full text
    The chimeric fusion oncogene early B-cell factor 1-platelet-derived growth factor receptor-β (EBF1-PDGFRB) is a recurrent lesion observed in Philadelphia-like B-acute lymphoblastic leukemia (B-ALL) and is associated with particularly poor prognosis. While it is understood that this fusion activates tyrosine kinase signaling, the mechanisms of transformation and importance of perturbation of EBF1 activity remain unknown. EBF1 is a nuclear transcription factor required for normal B-lineage specification, commitment and development. Conversely, PDGFRB is a receptor tyrosine kinase that is normally repressed in lymphocytes, yet PDGFRB remains a common fusion partner in leukemias. Here, we demonstrate that the EBF1-PDGFRB fusion results in loss of EBF1 function, multimerization and autophosphorylation of the fusion protein, activation of signal transducer and activator of transcription 5 (STAT5) signaling and gain of interleukin-7 (IL-7)-independent cell proliferation. Deregulation and loss of EBF1 function is critically dependent on the nuclear export activity of the transmembrane (TM) domain of PDGFRB. Deletion of the TM domain partially rescues EBF1 function and restores IL-7 dependence, without requiring kinase inhibition. Moreover, we demonstrate that EBF1-PDGFRB synergizes with loss of IKAROS function in a fully penetrant B-ALL in vivo. Thus, we establish that EBF1-PDGFRB is sufficient to drive leukemogenesis through TM-dependent loss of transcription factor function, increased proliferation and synergy with additional genetic insults including loss of IKAROS function.SJ Welsh, ML Churchman, M Togni, CG Mullighan and J Hagma

    Induction of SerpinB2 and Th1/Th2 Modulation by SerpinB2 during Lentiviral Infections In Vivo

    Get PDF
    SerpinB2, also known as plasminogen activator inhibitor type 2, is a major product of activated monocytes/macrophages and is often strongly induced during infection and inflammation; however, its physiological function remains somewhat elusive. Herein we show that SerpinB2 is induced in peripheral blood mononuclear cells following infection of pigtail macaques with CCR5-utilizing (macrophage-tropic) SIV, but not the rapidly pathogenic CXCR4-utilizing (T cell-tropic) SHIV. To investigate the role of SerpinB2 in lentiviral infections, SerpinB2 mice were infected with EcoHIV, a chimeric HIV in which HIV gp120 has been replaced with gp80 from ecotropic murine leukemia virus. EcoHIV infected SerpinB2 mice produced significantly lower anti-gag IgG1 antibody titres than infected SerpinB2 mice, and showed slightly delayed clearance of EcoHIV. Analyses of published microarray studies showed significantly higher levels of SerpinB2 mRNA in monocytes from HIV-1 infected patients when compared with uninfected controls, as well as a significant negative correlation between SerpinB2 and T-bet mRNA levels in peripheral blood mononuclear cells. These data illustrate that SerpinB2 can be induced by lentiviral infection in vivo and support the emerging notion that a physiological role of SerpinB2 is modulation of Th1/Th2 responses
    corecore