144 research outputs found

    Alcohol and HIV Disease Progression: Weighing the Evidence

    Get PDF
    Heavy alcohol use is commonplace among HIV-infected individuals; however, the extent that alcohol use adversely impacts HIV disease progression has not been fully elucidated. Fairly strong evidence suggests that heavy alcohol consumption results in behavioral and biological processes that likely increase HIV disease progression, and experimental evidence of the biological effect of heavy alcohol on simian immunodeficiency virus in macaques is quite suggestive. However, several observational studies of the effect of heavy alcohol consumption on HIV progression conducted in the 1990s found no association of heavy alcohol consumption with time to AIDS diagnosis, while some more recent studies showed associations of heavy alcohol consumption with declines of CD4 cell counts and nonsuppression of HIV viral load. We discuss several plausible biological and behavioral mechanisms by which alcohol may cause HIV disease progression, evidence from prospective observational human studies, and suggest future research to further illuminate this important issue

    Marine Dynamics and Productivity in the Bay of Bengal

    Get PDF
    The Bay of Bengal provides important ecosystem services to the Bangladesh delta. It is also subject to the consequences of climate change as monsoon atmospheric circulation and fresh water input from the major rivers are the dominating influences. Changes in marine circulation will affect patterns of biological production through alterations in the supply of nutrients to photosynthesising plankton. Productivity in the northern Bay will also be sensitive to changes in riverborne nutrients. In turn, these changes could influence potential fish catch. The Bay also affects the physical environment of Bangladesh: relative sea-level rise is expected to be in the range of 0.5–1.7 m by 2100, and changing climate could affect the development of tropical cyclones over the Bay

    Interspecific Proteomic Comparisons Reveal Ash Phloem Genes Potentially Involved in Constitutive Resistance to the Emerald Ash Borer

    Get PDF
    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion
    • …
    corecore