150 research outputs found
Dose-Specific Adverse Drug Reaction Identification in Electronic Patient Records: Temporal Data Mining in an Inpatient Psychiatric Population
BACKGROUND: Data collected for medical, filing and administrative purposes in electronic patient records (EPRs) represent a rich source of individualised clinical data, which has great potential for improved detection of patients experiencing adverse drug reactions (ADRs), across all approved drugs and across all indication areas. OBJECTIVES: The aim of this study was to take advantage of techniques for temporal data mining of EPRs in order to detect ADRs in a patient- and dose-specific manner. METHODS: We used a psychiatric hospital’s EPR system to investigate undesired drug effects. Within one workflow the method identified patient-specific adverse events (AEs) and links these to specific drugs and dosages in a temporal manner, based on integration of text mining results and structured data. The structured data contained precise information on drug identity, dosage and strength. RESULTS: When applying the method to the 3,394 patients in the cohort, we identified AEs linked with a drug in 2,402 patients (70.8 %). Of the 43,528 patient-specific drug substances prescribed, 14,736 (33.9 %) were linked with AEs. From these links we identified multiple ADRs (p < 0.05) and found them to occur at similar frequencies, as stated by the manufacturer and in the literature. We showed that drugs displaying similar ADR profiles share targets, and we compared submitted spontaneous AE reports with our findings. For nine of the ten most prescribed antipsychotics in the patient population, larger doses were prescribed to sedated patients than non-sedated patients; five patients exhibited a significant difference (p < 0.05). Finally, we present two cases (p < 0.05) identified by the workflow. The method identified the potentially fatal AE QT prolongation caused by methadone, and a non-described likely ADR between levomepromazine and nightmares found among the hundreds of identified novel links between drugs and AEs (p < 0.05). CONCLUSIONS: The developed method can be used to extract dose-dependent ADR information from already collected EPR data. Large-scale AE extraction from EPRs may complement or even replace current drug safety monitoring methods in the future, reducing or eliminating manual reporting and enabling much faster ADR detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s40264-014-0145-z) contains supplementary material, which is available to authorised users
Inhibition of Ion Channels and Heart Beat in Drosophila by Selective COX-2 Inhibitor SC-791
Recent findings suggest that modulation of ion channels might be implicated in some of the clinical effects of coxibs, selective inhibitors of cyclooxygenase-2 (COX-2). Celecoxib and its inactive analog 2,5-dimethyl-celecoxib, but not rofecoxib, can suppress or augment ionic currents and alter functioning of neurons and myocytes. To better understand these unexpected effects, we have recently investigated the mechanism of inhibition of human Kv2.1 channels by a highly selective COX-2 inhibitor SC-791. In this study we have further explored the SC-791 action on ion channels and heartbeat in Drosophila, which lacks cyclooxygenases and thus can serve as a convenient model to study COX-2-independent mechanisms of coxibs. Using intracellular recordings in combination with a pharmacological approach and utilizing available Drosophila mutants, we found that SC-791 inhibited voltage-activated K+ and L-type Ca2+ channels in larval body-wall muscles and reduced heart rate in a concentration-dependent manner. Unlike celecoxib and several other K+ channel blockers, SC-791 did not induce arrhythmia. Instead, application of SC-791 resulted in a dramatic slowing of contractions and, at higher concentrations, in progressively weaker contractions with gradual cessation of heartbeat. Isradipine, a selective blocker of L-type Ca2+ channels, showed a similar pattern of heart arrest, though no prolongation of contractions was observed. Ryanodine was the only channel modulating compound of those tested additionally that was capable of slowing contractions. Like SC-791, ryanodine reduced heart rate without arrhythmia. However, it could not stop heartbeat completely even at 500 µM, the highest concentration used. The magnitude of heart rate reduction, when SC-791 and ryanodine were applied together, was smaller than expected for independent mechanisms, raising the possibility that SC-791 might be interfering with excitation-contraction coupling in Drosophila heart
Correlation versus Causation? Pharmacovigilance of the Analgesic Flupirtine Exemplifies the Need for Refined Spontaneous ADR Reporting
Annually, adverse drug reactions result in more than 2,000,000 hospitalizations and rank among the top 10 causes of death in the United States. Consequently, there is a need to continuously monitor and to improve the safety assessment of marketed drugs. Nonetheless, pharmacovigilance practice frequently lacks causality assessment. Here, we report the case of flupirtine, a centrally acting non-opioid analgesic. We re-evaluated the plausibility and causality of 226 unselected, spontaneously reported hepatobiliary adverse drug reactions according to the adapted Bradford-Hill criteria, CIOMS score and WHO-UMC scales. Thorough re-evaluation showed that only about 20% of the reported cases were probable or likely for flupirtine treatment, suggesting an incidence of flupirtine-related liver injury of 1∶ 100,000 when estimated prescription data are considered, or 0.8 in 10,000 on the basis of all 226 reported adverse drug reactions. Neither daily or cumulative dose nor duration of treatment correlated with markers of liver injury. In the majority of cases (151/226), an average of 3 co-medications with drugs known for their liver liability was observed that may well be causative for adverse drug reactions, but were reported under a suspected flupirtine ADR. Our study highlights the need to improve the quality and standards of ADR reporting. This should be done with utmost care taking into account contributing factors such as concomitant medications including over-the-counter drugs, the medical history and current health conditions, in order to avoid unjustified flagging and drug warnings that may erroneously cause uncertainty among healthcare professionals and patients, and may eventually lead to unjustified safety signals of useful drugs with a reasonable risk to benefit ratio
Reviewing the literature on access to prompt and effective malaria treatment in Kenya: implications for meeting the Abuja targets
<p>Abstract</p> <p>Background</p> <p>Effective case management is central to reducing malaria mortality and morbidity worldwide, but only a minority of those affected by malaria, have access to prompt effective treatment.</p> <p>In Kenya, the Division of Malaria Control is committed to ensuring that 80 percent of childhood fevers are treated with effective anti-malarial medicines within 24 hours of fever onset, but this target is largely unmet. This review aimed to document evidence on access to effective malaria treatment in Kenya, identify factors that influence access, and make recommendations on how to improve prompt access to effective malaria treatment. Since treatment-seeking patterns for malaria are similar in many settings in sub-Saharan Africa, the findings presented in this review have important lessons for other malaria endemic countries.</p> <p>Methods</p> <p>Internet searches were conducted in PUBMED (MEDLINE) and HINARI databases using specific search terms and strategies. Grey literature was obtained by soliciting reports from individual researchers working in the treatment-seeking field, from websites of major organizations involved in malaria control and from international reports.</p> <p>Results</p> <p>The review indicated that malaria treatment-seeking occurs mostly in the informal sector; that most fevers are treated, but treatment is often ineffective. Irrational drug use was identified as a problem in most studies, but determinants of this behaviour were not documented. Availability of non-recommended medicines over-the-counter and the presence of substandard anti-malarials in the market are well documented. Demand side determinants of access include perception of illness causes, severity and timing of treatment, perceptions of treatment efficacy, simplicity of regimens and ability to pay. Supply side determinants include distance to health facilities, availability of medicines, prescribing and dispensing practices and quality of medicines. Policy level factors are around the complexity and unclear messages regarding drug policy changes.</p> <p>Conclusion</p> <p>Kenya, like many other African countries, is still far from achieving the Abuja targets. The government, with support from donors, should invest adequately in mechanisms that promote access to effective treatment. Such approaches should focus on factors influencing multiple dimensions of access and will require the cooperation of all stakeholders working in malaria control.</p
Comparative Microbial Modules Resource: Generation and Visualization of Multi-species Biclusters
The increasing abundance of large-scale, high-throughput datasets for many closely related organisms provides opportunities for comparative analysis via the simultaneous biclustering of datasets from multiple species. These analyses require a reformulation of how to organize multi-species datasets and visualize comparative genomics data analyses results. Recently, we developed a method, multi-species cMonkey, which integrates heterogeneous high-throughput datatypes from multiple species to identify conserved regulatory modules. Here we present an integrated data visualization system, built upon the Gaggle, enabling exploration of our method's results (available at http://meatwad.bio.nyu.edu/cmmr.html). The system can also be used to explore other comparative genomics datasets and outputs from other data analysis procedures – results from other multiple-species clustering programs or from independent clustering of different single-species datasets. We provide an example use of our system for two bacteria, Escherichia coli and Salmonella Typhimurium. We illustrate the use of our system by exploring conserved biclusters involved in nitrogen metabolism, uncovering a putative function for yjjI, a currently uncharacterized gene that we predict to be involved in nitrogen assimilation
Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida)
Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of ‘taxonomics’. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from highthroughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research
Connecting Planetary Composition with Formation
The rapid advances in observations of the different populations of
exoplanets, the characterization of their host stars and the links to the
properties of their planetary systems, the detailed studies of protoplanetary
disks, and the experimental study of the interiors and composition of the
massive planets in our solar system provide a firm basis for the next big
question in planet formation theory. How do the elemental and chemical
compositions of planets connect with their formation? The answer to this
requires that the various pieces of planet formation theory be linked together
in an end-to-end picture that is capable of addressing these large data sets.
In this review, we discuss the critical elements of such a picture and how they
affect the chemical and elemental make up of forming planets. Important issues
here include the initial state of forming and evolving disks, chemical and dust
processes within them, the migration of planets and the importance of planet
traps, the nature of angular momentum transport processes involving turbulence
and/or MHD disk winds, planet formation theory, and advanced treatments of disk
astrochemistry. All of these issues affect, and are affected by the chemistry
of disks which is driven by X-ray ionization of the host stars. We discuss how
these processes lead to a coherent end-to-end model and how this may address
the basic question.Comment: Invited review, accepted for publication in the 'Handbook of
Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018). 46 pages, 10
figure
As Far as the Eye Can See: Relationship between Psychopathic Traits and Pupil Response to Affective Stimuli
Psychopathic individuals show a range of affective processing deficits, typically associated with the interpersonal/affective component of psychopathy. However, previous research has been inconsistent as to whether psychopathy, within both offender and community populations, is associated with deficient autonomic responses to the simple presentation of affective stimuli. Changes in pupil diameter occur in response to emotionally arousing stimuli and can be used as an objective indicator of physiological reactivity to emotion. This study used pupillometry to explore whether psychopathic traits within a community sample were associated with hypo-responsivity to the affective content of stimuli. Pupil activity was recorded for 102 adult (52 female) community participants in response to affective (both negative and positive affect) and affectively neutral stimuli, that included images of scenes, static facial expressions, dynamic facial expressions and sound-clips. Psychopathic traits were measured using the Triarchic Psychopathy Measure. Pupil diameter was larger in response to negative stimuli, but comparable pupil size was demonstrated across pleasant and neutral stimuli. A linear relationship between subjective arousal and pupil diameter was found in response to sound-clips, but was not evident in response to scenes. Contrary to predictions, psychopathy was unrelated to emotional modulation of pupil diameter across all stimuli. The findings were the same when participant gender was considered. This suggests that psychopathy within a community sample is not associated with autonomic hypo-responsivity to affective stimuli, and this effect is discussed in relation to later defensive/appetitive mobilisation deficits
- …