3,828 research outputs found
Surface acoustical intensity measurements on a diesel engine
The use of surface intensity measurements as an alternative to the conventional selective wrapping technique of noise source identification and ranking on diesel engines was investigated. A six cylinder, in line turbocharged, 350 horsepower diesel engine was used. Sound power was measured under anechoic conditions for eight separate parts of the engine at steady state operating conditions using the conventional technique. Sound power measurements were repeated on five separate parts of the engine using the surface intensity at the same steady state operating conditions. The results were compared by plotting sound power level against frequency and noise source rankings for the two methods
Acoustic prediction methods for rocket engines, including the effects of clustered engines and deflected exhaust flow
Acoustic prediction methods for rocket engine
The effects upon shock measurements of limited frequency response instrumentation
Analysis of ideal shock pulse modifications as induced by measuring systems with different frequency response limitation
Radio Synchrotron Emission from Secondary Leptons in the Vicinity of Sgr A*
A point-like source of ~TeV gamma-rays has recently been seen towards the
Galactic center by HESS and other air Cerenkov telescopes. In recent work
(Ballantyne et al. 2007), we demonstrated that these gamma-rays can be
attributed to high-energy protons that (i) are accelerated close to the event
horizon of the central black hole, Sgr A*, (ii) diffuse out to ~pc scales, and
(iii) finally interact to produce gamma-rays. The same hadronic collision
processes will necessarily lead to the creation of electrons and positrons.
Here we calculate the synchrotron emissivity of these secondary leptons in the
same magnetic field configuration through which the initiating protons have
been propagated in our model. We compare this emission with the observed ~GHz
radio spectrum of the inner few pc region which we have assembled from archival
data and new measurements we have made with the Australia Telescope Compact
Array. We find that our model predicts secondary synchrotron emission with a
steep slope consistent with the observations but with an overall normalization
that is too large by a factor of ~ 2. If we further constrain our theoretical
gamma-ray curve to obey the implicit EGRET upper limit on emission from this
region we predict radio emission that is consistent with observations, i.e.,
the hadronic model of gamma ray emission can, simultaneously and without
fine-tuning, also explain essentially all the diffuse radio emission detected
from the inner few pc of the Galaxy.Comment: 11 pages, 2 figures. Two references missing from published version
added and acknowledgements extende
Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface
We describe direct imaging measurements of the collective and relative
diffusion of two colloidal spheres near a flat plate. The bounding surface
modifies the spheres' dynamics, even at separations of tens of radii. This
behavior is captured by a stokeslet analysis of fluid flow driven by the
spheres' and wall's no-slip boundary conditions. In particular, this analysis
reveals surprising asymmetry in the normal modes for pair diffusion near a flat
surface.Comment: 4 pages, 4 figure
Fluid Mechanical and Electrical Fluctuation Forces in Colloids
Fluctuations in fluid velocity and fluctuations in electric fields may both
give rise to forces acting on small particles in colloidal suspensions. Such
forces in part determine the thermodynamic stability of the colloid. At the
classical statistical thermodynamic level, the fluid velocity and electric
field contributions to the forces are comparable in magnitude. When quantum
fluctuation effects are taken into account, the electric fluctuation induced
van der Waals forces dominate those induced by purely fluid mechanical motions.
The physical principles are applied in detail for the case of colloidal
particle attraction to the walls of the suspension container and more briefly
for the case of forces between colloidal particles.Comment: ReVTeX format, one *.eps figur
Like-charge attraction through hydrodynamic interaction
We demonstrate that the attractive interaction measured between like-charged
colloidal spheres near a wall can be accounted for by a nonequilibrium
hydrodynamic effect. We present both analytical results and Brownian dynamics
simulations which quantitatively capture the one-wall experiments of Larsen and
Grier (Nature 385, p. 230, 1997).Comment: 10 pages, 4 figure
- …