6,873 research outputs found

    Upregulation of long noncoding RNA MIAT in aggressive form of chronic lymphocytic leukemias.

    Get PDF
    Long noncoding RNAs (lncRNAs) are non-proten-coding transcripts of more than 200 nucleotides generated by RNA polymerase II and their expressions are tightly regulated in cell type specific- and/or cellular differential stage specific- manner. MIAT, originally isolated as a candidate gene for myocardial infarction, encodes lncRNA (termed MIAT). Here, we determined the expression level of MIAT in established leukemia/lymphoma cell lines and found its upregulation in lymphoid but not in myeloid cell lineage with mature B cell phenotype. MIAT expression level was further determined in chronic lymphocytic leukemias (CLL), characterized by expansion of leukemic cells with mature B phenotype, to demonstrate relatively high occurrence of MIAT upregulation in aggressive form of CLL carrying either 17p-deletion, 11q-deletion, or Trisomy 12 over indolent form carrying 13p-deletion. Furthermore, we show that MIAT constitutes a regulatory loop with OCT4 in malignant mature B cell, as was previously reported in mouse pulripotent stem cell, and that both molecules are essential for cell survival

    How Many Templates for GW Chirp Detection? The Minimal-Match Issue Revisited

    Full text link
    In a recent paper dealing with maximum likelihood detection of gravitational wave chirps from coalescing binaries with unknown parameters we introduced an accurate representation of the no-signal cumulative distribution of the supremum of the whole correlator bank. This result can be used to derive a refined estimate of the number of templates yielding the best tradeoff between detector's performance (in terms of lost signals among those potentially detectable) and computational burden.Comment: submitted to Class. Quantum Grav. Typing error in eq. (4.8) fixed; figure replaced in version

    The expression pattern of MUC1 (EMA) is related to tumour characteristics and clinical outcome of invasive ductal breast carcinoma

    Get PDF
    Aims: To clarify MUC1 patterns in invasive ductal breast carcinoma and to relate them to clinicopathological parameters, coexpression of other biological markers and prognosis. Methods and results: Samples from 243 consecutive patients with primary ductal carcinoma were incorporated into tissue microarrays (TMAs). Slides were stained for MUC1, oestrogen receptor (ER), progesterone receptor (PR), Her2/neu, p53 and cyclin D1. Apical membrane MUC1 expression was associated with smaller tumours (P = 0.001), lower tumour grades (P < 0.001), PR positivity (P = 0.003) and increased overall survival (OS; P = 0.030). Diffuse cytoplasmic MUC1 expression was associated with cyclin D1 positivity (P = 0.009) and increased relapse-free survival (RFS; P = 0.034). Negativity for MUC1 was associated with ER negativity (P = 0.004), PR negativity (P = 0.001) and cyclin D1 negativity (P = 0.009). In stepwise multivariate analysis MUC1 negativity was an independent predictor of both RFS [hazard ratio (HR) 3.5, 95% confidence interval (CI) 1.5, 8.5; P = 0.005] and OS (HR 14.7, 9 5% Cl 4.9, 44. 1; P < 0.001). Conclusions: The expression pattern of MUC1 in invasive ductal breast carcinoma is related to tumour characteristics and clinical outcome. In addition, negative MUC1 expression is an independent risk factor for poor RFS and OS, besides 'classical' prognostic indicators

    Surface roughness effect on ultracold neutron interaction with a wall and implications for computer simulations

    Get PDF
    We review the diffuse scattering and the loss coefficient in ultracold neutron reflection from slightly rough surfaces, report a surprising reduction in loss coefficient due to roughness, and discuss the possibility of transition from quantum treatment to ray optics. The results are used in a computer simulation of neutron storage in a recent neutron lifetime experiment that re-ported a large discrepancy of neutron lifetime with the current particle data value. Our partial re-analysis suggests the possibility of systematic effects that were not included in this publication.Comment: 39 pages, 9 figures; additional calculations include

    Romano, Santi

    Get PDF
    Santi Romano was born in Palermo, Sicily on January 31, 1875. His origins had a notable impact on his legal training, as Palermo was the cradle of a host of renewed legal studies that changed once and for all the way of approaching public law in Italy. His teacher, Vittorio Emanuele Orlando, was both a leading statesman and an innovator of the notion and practice of public and administrative law. The young Romano contributed to a seminal collection of volumes, edited by Orlando, devoted to Italian administrative law, Primo trattato completo di diritto amministrativo italiano (First Complete Treatise on Italian Administrative Law), published between 1900 and 1915. The importance Orlando and his many collaborators attached to such a monumental scholarly enterprise should not go unnoticed: in his preface to the first volume, Orlando emphasized his and the other contributors’ conscious, and eventually successful, attempt at constructing an Italian school of public law. This collection of writings, he claimed, was the necessary counterpoint to the growing expansion of the state’s competences in the public realm. While in the past, Italian scholars had been heavily influenced by the French lawyers who had been working and mulling over the Code Napoléon and, subsequently, by the German pandectists, Orlando insisted that the specialization and evolution of the Italian state called for a full-fledged “homegrown” scholarly apparatus. After obtaining his degree at the University of Palermo, Romano wholeheartedly adhered to this ambitious project

    Molecular dynamics simulations in photosynthesis

    Get PDF
    Photosynthesis is regulated by a dynamic interplay between proteins, enzymes, pigments, lipids, and cofactors that takes place on a large spatio-temporal scale. Molecular dynamics (MD) simulations provide a powerful toolkit to investigate dynamical processes in (bio)molecular ensembles from the (sub)picosecond to the (sub)millisecond regime and from the Å to hundreds of nm length scale. Therefore, MD is well suited to address a variety of questions arising in the field of photosynthesis research. In this review, we provide an introduction to the basic concepts of MD simulations, at atomistic and coarse-grained level of resolution. Furthermore, we discuss applications of MD simulations to model photosynthetic systems of different sizes and complexity and their connection to experimental observables. Finally, we provide a brief glance on which methods provide opportunities to capture phenomena beyond the applicability of classical MD

    Translocation of immunoglobulin VH genes in Burkitt lymphoma.

    Full text link
    corecore