758 research outputs found

    Low-frequency absorption cross section of the electromagnetic waves for the extreme Reissner-Nordstrom black holes in higher dimensions

    Full text link
    We investigate the low-frequency absorption cross section of the electromagnetic waves for the extreme Reissner-Nordstrom black holes in higher dimensions. We first construct the exact solutions to the relevant wave equations in the zero-frequency limit. In most cases it is possible to use these solutions to find the transmission coefficients of partial waves in the low-frequency limit. We use these transmission coefficients to calculate the low-frequency absorption cross section in five and six spacetime dimensions. We find that this cross section is dominated by the modes with l=2 in the spherical-harmonic expansion rather than those with l=1, as might have been expected, because of the mixing between the electromagnetic and gravitational waves. We also find an upper limit for the low-frequency absorption cross section in dimensions higher than six.Comment: 7 pages, 1 figure, Phys. Rev. D (to appear

    The Unruh effect and its applications

    Full text link
    It has been thirty years since the discovery of the Unruh effect. It has played a crucial role in our understanding that the particle content of a field theory is observer dependent. This effect is important in its own right and as a way to understand the phenomenon of particle emission from black holes and cosmological horizons. Here, we review the Unruh effect with particular emphasis to its applications. We also comment on a number of recent developments and discuss some controversies. Effort is also made to clarify what seems to be common misconceptions.Comment: 53 pages, 11 figures, submitted to Reviews of Modern Physic

    Interaction of Hawking radiation and a static electric charge

    Get PDF
    We investigate whether the equality found for the response of static scalar sources interacting (i) with {\em Hawking radiation in Schwarzschild spacetime} and (ii) with the Fulling-Davies-Unruh thermal bath in the Rindler wedge is maintained in the case of electric charges. We find a finite result in the Schwarzschild case, which is computed exactly, in contrast with the divergent result associated with the infrared catastrophe in the Rindler case, i.e. in the case of uniformly accelerated charges in Minkowski spacetime. Thus, the equality found for scalar sources does not hold for electric charges.Comment: 8 pages (REVTEX

    Synchronized stationary clouds in a static fluid

    Full text link
    The existence of stationary bound states for the hydrodynamic velocity field between two concentric cylinders is established. We argue that rotational motion, together with a trapping mechanism for the associated field, is sufficient to mitigate energy dissipation between the cylinders, thus allowing the existence of infinitely long lived modes, which we dub stationary clouds. We demonstrate the existence of such stationary clouds for sound and surface waves when the fluid is static and the internal cylinder rotates with constant angular velocity Ω\Omega. These setups provide a unique opportunity for the first experimental observation of synchronized stationary clouds. As in the case of bosonic fields around rotating black holes and black hole analogues, the existence of these clouds relies on a synchronization condition between Ω\Omega and the angular phase velocity of the cloud.Comment: v2: 7 pages, 4 figures. Accepted for publication in Physics Letters

    Free massive particles with total energy E < mc^2 in curved spacetimes

    Get PDF
    We analyze free elementary particles with rest mass mm and total energy E<mc2E < m c^2 in the Rindler wedge, outside Reissner-Nordstrom black holes and in the spacetime of relativistic (and non-relativistic) stars, and use Unruh-DeWitt-like detectors to calculate the associated particle detection rate in each case. The (mean) particle position is identified with the spatial average of the excitation probability of the detectors, which are supposed to cover the whole space. Our results are shown to be in harmony with General Relativity classical predictions. Eventually we reconcile our conclusions with Earth-based experiments which are in good agreement with Emc2E \geq m c^2.Comment: 12 pages (REVTEX), 12 figure

    Do static sources respond to massive scalar particles from the Hawking radiation as uniformly accelerated ones do in the inertial vacuum?

    Full text link
    We revisit the recently found equivalence for the response of a static scalar source interacting with a {\em massless} Klein-Gordon field when the source is (i) static in Schwarzschild spacetime, in the Unruh vacuum associated with the Hawking radiation and (ii) uniformly accelerated in Minkowski spacetime, in the inertial vacuum, provided that the source's proper acceleration is the same in both cases. It is shown that this equivalence is broken when the massless Klein-Gordon field is replaced by a {\em massive} one.Comment: 4 pages, 2 figure
    corecore