The existence of stationary bound states for the hydrodynamic velocity field
between two concentric cylinders is established. We argue that rotational
motion, together with a trapping mechanism for the associated field, is
sufficient to mitigate energy dissipation between the cylinders, thus allowing
the existence of infinitely long lived modes, which we dub stationary clouds.
We demonstrate the existence of such stationary clouds for sound and surface
waves when the fluid is static and the internal cylinder rotates with constant
angular velocity Ω. These setups provide a unique opportunity for the
first experimental observation of synchronized stationary clouds. As in the
case of bosonic fields around rotating black holes and black hole analogues,
the existence of these clouds relies on a synchronization condition between
Ω and the angular phase velocity of the cloud.Comment: v2: 7 pages, 4 figures. Accepted for publication in Physics Letters