9 research outputs found

    Vibrio cholerae vexH Encodes a Multiple Drug Efflux Pump That Contributes to the Production of Cholera Toxin and the Toxin Co-Regulated Pilus

    Get PDF
    The resistance-nodulation-division (RND) efflux systems are ubiquitous transporters that function in antimicrobial resistance. Recent studies showed that RND systems were required for virulence factor production in Vibrio cholerae. The V. cholerae genome encodes six RND efflux systems. Three of the RND systems (VexB, VexD, and VexK) were previously shown to be redundant for in vitro resistance to bile acids and detergents. A mutant lacking the VexB, VexD, and VexK RND pumps produced wild-type levels of cholera toxin (CT) and the toxin co-regulated pilus (TCP) and was moderately attenuated for intestinal colonization. In contrast, a RND negative mutant produced significantly reduced amounts of CT and TCP and displayed a severe colonization defect. This suggested that one or more of the three uncharacterized RND efflux systems (i.e. VexF, VexH, and VexM) were required for pathogenesis. In this study, a genetic approach was used to generate a panel of V. cholerae RND efflux pump mutants in order to determine the function of VexH in antimicrobial resistance, virulence factor production, and intestinal colonization. VexH contributed to in vitro antimicrobial resistance and exhibited a broad substrate specificity that was redundant with the VexB, VexD, and VexK RND efflux pumps. These four efflux pumps were responsible for in vitro antimicrobial resistance and were required for virulence factor production and intestinal colonization. Mutation of the VexF and/or VexM efflux pumps did not affect in vitro antimicrobial resistance, but did negatively affect CT and TCP production. Collectively, our results demonstrate that the V. cholerae RND efflux pumps have redundant functions in antimicrobial resistance and virulence factor production. This suggests that the RND efflux systems contribute to V. cholerae pathogenesis by providing the bacterium with protection against antimicrobial compounds that are present in the host and by contributing to the regulated expression of virulence factors

    A coiled-coil domain acts as a molecular ruler to regulate O-antigen chain length in lipopolysaccharide

    No full text
    Long-chain bacterial polysaccharides have important roles in pathogenicity. In Escherichia coli O9a, a model for ABC transporter–dependent polysaccharide assembly, a large extracellular carbohydrate with a narrow size distribution is polymerized from monosaccharides by a complex of two proteins, ​WbdA (polymerase) and ​WbdD (terminating protein). Combining crystallography and small-angle X-ray scattering, we found that the C-terminal domain of ​WbdD contains an extended coiled-coil that physically separates ​WbdA from the catalytic domain of ​WbdD. The effects of insertions and deletions in the coiled-coil region were analyzed in vivo, revealing that polymer size is controlled by varying the length of the coiled-coil domain. Thus, the coiled-coil domain of ​WbdD functions as a molecular ruler that, along with ​WbdA:​WbdD stoichiometry, controls the chain length of a model bacterial polysaccharide

    Membrane Insertion for the Detection of Lipopolysaccharides: Exploring the Dynamics of Amphiphile-in-Lipid Assays

    Get PDF
    <div><p>Shiga toxin-producing <i>Escherichia coli</i> is an important cause of foodborne illness, with cases attributable to beef, fresh produce and other sources. Many serotypes of the pathogen cause disease, and differentiating one serotype from another requires specific identification of the O antigen located on the lipopolysaccharide (LPS) molecule. The amphiphilic structure of LPS poses a challenge when using classical detection methods, which do not take into account its lipoglycan biochemistry. Typically, detection of LPS requires heat or chemical treatment of samples and relies on bioactivity assays for the conserved lipid A portion of the molecule. Our goal was to develop assays to facilitate the direct and discriminative detection of the entire LPS molecule and its O antigen in complex matrices using minimal sample processing. To perform serogroup identification of LPS, we used a method called membrane insertion on a waveguide biosensor, and tested three serogroups of LPS. The membrane insertion technique allows for the hydrophobic association of LPS with a lipid bilayer, where the exposed O antigen can be targeted for specific detection. Samples of beef lysate were spiked with LPS to perform O antigen specific detection of LPS from <i>E</i>. <i>coli</i> O157. To validate assay performance, we evaluated the biophysical interactions of LPS with lipid bilayers both in- and outside of a flow cell using fluorescence microscopy and fluorescently doped lipids. Our results indicate that membrane insertion allows for the qualitative and reliable identification of amphiphilic LPS in complex samples like beef homogenates. We also demonstrated that LPS-induced hole formation does not occur under the conditions of the membrane insertion assays. Together, these findings describe for the first time the serogroup-specific detection of amphiphilic LPS in complex samples using a membrane insertion assay, and highlight the importance of LPS molecular conformations in detection architectures.</p></div

    Prospects for new antibiotics: a molecule-centered perspective

    No full text

    Enzyme Handbook

    No full text
    corecore