16 research outputs found
Hydrokinetic Turbine Effects on Fish Swimming Behaviour
Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines
already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect
fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis
hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring
fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed
that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their
movements through the area when the rotor was present. This deterrent effect on fish increased with current speed.
Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish
were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms-1. The
effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape
influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the
investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish
movements, particularly for large species, with possible effects on habitat connectivity if migration routes are
exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of
several metres width to allow large fish to pass through. In combination with further research the insights from this
study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological
impacts
Fin Whale Sound Reception Mechanisms: Skull Vibration Enables Low-Frequency Hearing
<div><p>Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (<i>Balaenoptera physalus</i>) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whaleâs head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.</p></div