9 research outputs found

    Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species' Response to Climate Change

    Get PDF
    Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM) and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models), phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species), and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr) than it has been on average for the past 320 ky (2.3 m/yr)

    Geographical variation in shell shape of the pod razor shell Ensis siliqua (Bivalvia: Pharidae)

    Get PDF
    The present study assessed the existence of variation in the shell shape of the pod razor shell (Ensis siliqua) throughout its distributional range in the north- eastern Atlantic. Shells of E. siliqua caught at seven collecting sites (three in Portugal, three in Spain and one in Ireland) were studied by geometric morphometric methods, using both landmark- and contour-based methods. Both approaches (landmarks inside the valves and shell outline) discriminated the shells from Aveiro (centre of Portugal) and Strangford Lough (Ireland) from those caught in the nearby localities (remaining Portuguese and Spanish sites,maximum distance of 550 km by sea). Landmark analysis revealed that shells from Aveiro were more similar to shells from Ireland (*1,500 km far away). Contour anal- ysis revealed that shells from Aveiro had a shape with a comparatively larger height-to-width ratio, whereas shells from Ireland showed a slightly more curved outline than in the remaining sites. Landmark- and contour-based methods provided coherent complementary information, confirming the usefulness of geometric morphometric analyses for discerning differences in shell shape among populations of E. siliqua. A brief review of previous applications of geometric morphometric methods to modern bivalve spe- cies is also provided.The authors would like to thank Dr. Dai Roberts and Adele Cromie for providing samples of pod razor shells from Ireland. This study was funded by Community Initiative Programmes (INTERREG-IIIB, Atlantic Area) Sustainable HARvesting of Ensis (090–SHARE) and Towards Integrated Management of Ensis Stocks (206–TIMES) from the European Community. Marta M. Rufino and Paulo Vasconcelos benefited from postdoctoral grants (SFRH/BPD/14935/2004 and SFRH/BPD/26348/2006, respectively) awarded by the Fundação para a Ciência e Tecnologia (FCT—Portugal). Finally, the authors acknowledge three anonymous referees for valuable comments and suggestions that greatly improved the revised manuscript.publishe

    Evaluating the Significance of Paleophylogeographic Species Distribution Models in Reconstructing Quaternary Range-Shifts of Nearctic Chelonians

    Get PDF
    <div><p>The climatic cycles of the Quaternary, during which global mean annual temperatures have regularly changed by 5–10°C, provide a special opportunity for studying the rate, magnitude, and effects of geographic responses to changing climates. During the Quaternary, high- and mid-latitude species were extirpated from regions that were covered by ice or otherwise became unsuitable, persisting in refugial retreats where the environment was compatible with their tolerances. In this study we combine modern geographic range data, phylogeny, Pleistocene paleoclimatic models, and isotopic records of changes in global mean annual temperature, to produce a temporally continuous model of geographic changes in potential habitat for 59 species of North American turtles over the past 320 Ka (three full glacial-interglacial cycles). These paleophylogeographic models indicate the areas where past climates were compatible with the modern ranges of the species and serve as hypotheses for how their geographic ranges would have changed in response to Quaternary climate cycles. We test these hypotheses against physiological, genetic, taxonomic and fossil evidence, and we then use them to measure the effects of Quaternary climate cycles on species distributions. Patterns of range expansion, contraction, and fragmentation in the models are strongly congruent with (i) phylogeographic differentiation; (ii) morphological variation; (iii) physiological tolerances; and (iv) intraspecific genetic variability. Modern species with significant interspecific differentiation have geographic ranges that strongly fluctuated and repeatedly fragmented throughout the Quaternary. Modern species with low genetic diversity have geographic distributions that were highly variable and at times exceedingly small in the past. Our results reveal the potential for paleophylogeographic models to (i) reconstruct past geographic range modifications, (ii) identify geographic processes that result in genetic bottlenecks; and (iii) predict threats due to anthropogenic climate change in the future.</p></div

    Evaluating the Significance of Paleophylogeographic Species Distribution Models in Reconstructing Quaternary Range-Shifts of Nearctic Chelonians

    No full text

    Risk factors for infectious complications after open fractures; a systematic review and meta-analysis

    No full text

    A framework for incorporating evolutionary genomics into biodiversity conservation and management

    No full text
    corecore