208 research outputs found

    Higher risk for acute childhood lymphoblastic leukaemia in Swedish population centres 1973-94

    Get PDF
    A population-based sample of acute childhood leukaemia cases in Sweden 1973–94 was analysed by a geographical information system (GIS) for spatial leukaemia distribution in relation to population density. The annual incidence rate for acute lymphoblastic leukaemia (ALL) was 3.6, and for acute non-lymphoblastic leukaemia (ANLL) 0.7, cases per 100 000 children. Incidence rates in population centres, constituting 1.3% of Sweden's land area and approximately 80% of the population, compared with the rest of Sweden showed a statistically significant excess of ALL [odds ratio (OR) 1.68; 95% confidence interval (CI) 1.44–1.95], but not ANLL (OR 1.13; 95% CI 0.98–1.32). An increasing trend, however not statistically significant, was found for ALL incidence with both increasing population density in parishes and increasing degree of urbanity in municipalities. These findings support the theories that some environmental factors associated with high population density, such as infectious agents, may be of aetiological importance for childhood acute lymphoblastic leukaemia. © 1999 Cancer Research Campaig

    EB1 Is Required for Spindle Symmetry in Mammalian Mitosis

    Get PDF
    Most information about the roles of the adenomatous polyposis coli protein (APC) and its binding partner EB1 in mitotic cells has come from siRNA studies. These suggest functions in chromosomal segregation and spindle positioning whose loss might contribute to tumourigenesis in cancers initiated by APC mutation. However, siRNA-based approaches have drawbacks associated with the time taken to achieve significant expression knockdown and the pleiotropic effects of EB1 and APC gene knockdown. Here we describe the effects of microinjecting APC- or EB1- specific monoclonal antibodies and a dominant-negative EB1 protein fragment into mammalian mitotic cells. The phenotypes observed were consistent with the roles proposed for EB1 and APC in chromosomal segregation in previous work. However, EB1 antibody injection also revealed two novel mitotic phenotypes, anaphase-specific cortical blebbing and asymmetric spindle pole movement. The daughters of microinjected cells displayed inequalities in microtubule content, with the greatest differences seen in the products of mitoses that showed the severest asymmetry in spindle pole movement. Daughters that inherited the least mobile pole contained the fewest microtubules, consistent with a role for EB1 in processes that promote equality of astral microtubule function at both poles in a spindle. We propose that these novel phenotypes represent APC-independent roles for EB1 in spindle pole function and the regulation of cortical contractility in the later stages of mitosis. Our work confirms that EB1 and APC have important mitotic roles, the loss of which could contribute to CIN in colorectal tumour cells

    Factors Associated with Bovine Neonatal Pancytopenia (BNP) in Calves: A Case-Control Study

    Get PDF
    Bovine neonatal pancytopenia (BNP; previously known as idiopathic haemorrhagic diathesis and commonly known as bleeding calf syndrome) is a novel haemorrhagic disease of young calves which has emerged in a number of European countries during recent years. Data were retrospectively collected during June to November 2010 for 56 case calves diagnosed with BNP between 17 March and 7 June of the same year. These were compared with 58 control calves randomly recruited from herds with no history of BNP. Multivariable logistic regression analysis showed that increased odds of a calf being a BNP case were associated with its dam having received PregSure® BVD (Pfizer Animal Health) vaccination prior to the birth of the calf (odds ratio (OR) 40.78, p<0.001) and its herd of origin being located in Scotland (OR 9.71, p = 0.006). Decreased odds of a calf being a BNP case were associated with the calf having been kept outside (OR 0.11, p = 0.006). The longer that a cattle herd had been established on the farm was also associated with decreased odds of a calf in that herd being a BNP case (OR 0.97, p = 0.011)

    Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices

    Full text link
    By stacking various two-dimensional (2D) atomic crystals [1] on top of each other, it is possible to create multilayer heterostructures and devices with designed electronic properties [2-5]. However, various adsorbates become trapped between layers during their assembly, and this not only affects the resulting quality but also prevents the formation of a true artificial layered crystal upheld by van der Waals interaction, creating instead a laminate glued together by contamination. Transmission electron microscopy (TEM) has shown that graphene and boron nitride monolayers, the two best characterized 2D crystals, are densely covered with hydrocarbons (even after thermal annealing in high vacuum) and exhibit only small clean patches suitable for atomic resolution imaging [6-10]. This observation seems detrimental for any realistic prospect of creating van der Waals materials and heterostructures with atomically sharp interfaces. Here we employ cross sectional TEM to take a side view of several graphene-boron nitride heterostructures. We find that the trapped hydrocarbons segregate into isolated pockets, leaving the interfaces atomically clean. Moreover, we observe a clear correlation between interface roughness and the electronic quality of encapsulated graphene. This work proves the concept of heterostructures assembled with atomic layer precision and provides their first TEM images

    Xer Recombinase and Genome Integrity in Helicobacter pylori, a Pathogen without Topoisomerase IV

    Get PDF
    In the model organism E. coli, recombination mediated by the related XerC and XerD recombinases complexed with the FtsK translocase at specialized dif sites, resolves dimeric chromosomes into free monomers to allow efficient chromosome segregation at cell division. Computational genome analysis of Helicobacter pylori, a slow growing gastric pathogen, identified just one chromosomal xer gene (xerH) and its cognate dif site (difH). Here we show that recombination between directly repeated difH sites requires XerH, FtsK but not XerT, the TnPZ transposon associated recombinase. xerH inactivation was not lethal, but resulted in increased DNA per cell, suggesting defective chromosome segregation. The xerH mutant also failed to colonize mice, and was more susceptible to UV and ciprofloxacin, which induce DNA breakage, and thereby recombination and chromosome dimer formation. xerH inactivation and overexpression each led to a DNA segregation defect, suggesting a role for Xer recombination in regulation of replication. In addition to chromosome dimer resolution and based on the absence of genes for topoisomerase IV (parC, parE) in H. pylori, we speculate that XerH may contribute to chromosome decatenation, although possible involvement of H. pylori's DNA gyrase and topoisomerase III homologue are also considered. Further analyses of this system should contribute to general understanding of and possibly therapy development for H. pylori, which causes peptic ulcers and gastric cancer; for the closely related, diarrheagenic Campylobacter species; and for unrelated slow growing pathogens that lack topoisomerase IV, such as Mycobacterium tuberculosis

    Genomic and epigenetic evidence for oxytocin receptor deficiency in autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autism comprises a spectrum of behavioral and cognitive disturbances of childhood development and is known to be highly heritable. Although numerous approaches have been used to identify genes implicated in the development of autism, less than 10% of autism cases have been attributed to single gene disorders.</p> <p>Methods</p> <p>We describe the use of high-resolution genome-wide tilepath microarrays and comparative genomic hybridization to identify copy number variants within 119 probands from multiplex autism families. We next carried out DNA methylation analysis by bisulfite sequencing in a proband and his family, expanding this analysis to methylation analysis of peripheral blood and temporal cortex DNA of autism cases and matched controls from independent datasets. We also assessed oxytocin receptor (OXTR) gene expression within the temporal cortex tissue by quantitative real-time polymerase chain reaction (PCR).</p> <p>Results</p> <p>Our analysis revealed a genomic deletion containing the oxytocin receptor gene, <it>OXTR </it>(MIM accession no.: 167055), previously implicated in autism, was present in an autism proband and his mother who exhibits symptoms of obsessive-compulsive disorder. The proband's affected sibling did not harbor this deletion but instead may exhibit epigenetic misregulation of this gene through aberrant gene silencing by DNA methylation. Further DNA methylation analysis of the CpG island known to regulate <it>OXTR </it>expression identified several CpG dinucleotides that show independent statistically significant increases in the DNA methylation status in the peripheral blood cells and temporal cortex in independent datasets of individuals with autism as compared to control samples. Associated with the increase in methylation of these CpG dinucleotides is our finding that <it>OXTR </it>mRNA showed decreased expression in the temporal cortex tissue of autism cases matched for age and sex compared to controls.</p> <p>Conclusion</p> <p>Together, these data provide further evidence for the role of OXTR and the oxytocin signaling pathway in the etiology of autism and, for the first time, implicate the epigenetic regulation of <it>OXTR </it>in the development of the disorder.</p> <p>See the related commentary by Gurrieri and Neri: <url>http://www.biomedcentral.com/1741-7015/7/63</url></p
    corecore