10 research outputs found
Rice_Phospho 1.0: a new rice-specific SVM predictor for protein phosphorylation sites
Experimentally-determined or computationally-predicted protein phosphorylation sites for distinctive species are becoming increasingly common. In this paper, we compare the predictive performance of a novel classification algorithm with different encoding schemes to develop a rice-specific protein phosphorylation site predictor. Our results imply that the combination of Amino acid occurrence Frequency with Composition of K-Spaced Amino Acid Pairs (AF-CKSAAP) provides the best description of relevant sequence features that surround a phosphorylation site. A support vector machine (SVM) using AF-CKSAAP achieves the best performance in classifying rice protein phophorylation sites when compared to the other algorithms. We have used SVM with AF-CKSAAP to construct a rice-specific protein phosphorylation sites predictor, Rice-Phospho 1.0 (http://bioinformatics.fafu.edu.cn/rice-phospho1.0). We measure the Accuracy (ACC) and Matthews Correlation Coefficient (MCC) of Rice-Phospho 1.0 to be 82.0% and 0.64, significantly higher than those measures for other predictors such as Scansite, Musite, PlantPhos and PhosphoRice. Rice-Phospho 1.0 also successfully predicted the experimentally identified phosphorylation sites in LOC-Os03g51600.1, a protein sequence which did not appear in the training dataset. In summary, Rice-phospho 1.0 outputs reliable predictions of protein phosphorylation sites in rice, and will serve as a useful tool to the community
PhosTryp: a phosphorylation site predictor specific for parasitic protozoa of the family trypanosomatidae
<p>Abstract</p> <p>Background</p> <p>Protein phosphorylation modulates protein function in organisms at all levels of complexity. Parasites of the <it>Leishmania </it>genus undergo various developmental transitions in their life cycle triggered by changes in the environment. The molecular mechanisms that these organisms use to process and integrate these external cues are largely unknown. However <it>Leishmania </it>lacks transcription factors, therefore most regulatory processes may occur at a post-translational level and phosphorylation has recently been demonstrated to be an important player in this process. Experimental identification of phosphorylation sites is a time-consuming task. Moreover some sites could be missed due to the highly dynamic nature of this process or to difficulties in phospho-peptide enrichment.</p> <p>Results</p> <p>Here we present PhosTryp, a phosphorylation site predictor specific for trypansomatids. This method uses an SVM-based approach and has been trained with recent <it>Leishmania </it>phosphosproteomics data. PhosTryp achieved a 17% improvement in prediction performance compared with Netphos, a non organism-specific predictor. The analysis of the peptides correctly predicted by our method but missed by Netphos demonstrates that PhosTryp captures <it>Leishmania</it>-specific phosphorylation features. More specifically our results show that <it>Leishmania </it>kinases have sequence specificities which are different from their counterparts in higher eukaryotes. Consequently we were able to propose two possible <it>Leishmania</it>-specific phosphorylation motifs.</p> <p>We further demonstrate that this improvement in performance extends to the related trypanosomatids <it>Trypanosoma brucei </it>and <it>Trypanosoma cruzi</it>. Finally, in order to maximize the usefulness of PhosTryp, we trained a predictor combining all the peptides from <it>L. infantum, T. brucei and T. cruzi</it>.</p> <p>Conclusions</p> <p>Our work demonstrates that training on organism-specific data results in an improvement that extends to related species. PhosTryp is freely available at <url>http://phostryp.bio.uniroma2.it</url></p
Prediction of Ubiquitination Sites by Using the Composition of k-Spaced Amino Acid Pairs
As one of the most important reversible protein post-translation modifications, ubiquitination has been reported to be involved in lots of biological processes and closely implicated with various diseases. To fully decipher the molecular mechanisms of ubiquitination-related biological processes, an initial but crucial step is the recognition of ubiquitylated substrates and the corresponding ubiquitination sites. Here, a new bioinformatics tool named CKSAAP_UbSite was developed to predict ubiquitination sites from protein sequences. With the assistance of Support Vector Machine (SVM), the highlight of CKSAAP_UbSite is to employ the composition of k-spaced amino acid pairs surrounding a query site (i.e. any lysine in a query sequence) as input. When trained and tested in the dataset of yeast ubiquitination sites (Radivojac et al, Proteins, 2010, 78: 365–380), a 100-fold cross-validation on a 1∶1 ratio of positive and negative samples revealed that the accuracy and MCC of CKSAAP_UbSite reached 73.40% and 0.4694, respectively. The proposed CKSAAP_UbSite has also been intensively benchmarked to exhibit better performance than some existing predictors, suggesting that it can be served as a useful tool to the community. Currently, CKSAAP_UbSite is freely accessible at http://protein.cau.edu.cn/cksaap_ubsite/. Moreover, we also found that the sequence patterns around ubiquitination sites are not conserved across different species. To ensure a reasonable prediction performance, the application of the current CKSAAP_UbSite should be limited to the proteome of yeast
A phosphodegron controls nutrient-induced proteasomal activation of the signaling protease Ssy5
The Ssy1-Ptr3-Ssy5 (SPS) sensor of extracellular amino acids coordinates the sequential activity of general signaling factors and the 26S proteasome in a novel proteolytic activation cascade to activate the intracellular signaling protease Ssy5, which endoproteolytically activates two latent transcription factors
Assigning Quantitative Function to Post-Translational Modifications Reveals Multiple Sites of Phosphorylation That Tune Yeast Pheromone Signaling Output
Bioinformatics and evolutionary insight on the spike glycoprotein gene of QX-like and Massachusetts strains of infectious bronchitis virus
<p>Abstract</p> <p>Background</p> <p>Infectious bronchitis virus (IBV) is a Gammacoronavirus of the family C<it>oronaviridae</it> and is a causative agent of an economically important disease in poultry. The spike glycoprotein of IBV is essential for host cell attachment, neutralization, and is involved in the induction of protective immunity. Previously obtained sequence data of the spike gene of IBV QX-like and Massachusetts strains were subjected to bioinformatics analysis.</p> <p>Findings</p> <p>On analysis of potential phosphorylation sites, the Ser542 and Ser563 sites were not present in Massachusetts strains, while QX-like isolates did not have the Ser534 site. Massachusetts and QX-like strains showed different cleavage site motifs. The N-glycosylation sites ASN-XAA-SER/THR-55, 147, 200 and 545 were additionally present in QX-like strains. The leucine-rich repeat regions in Massachusetts strains consisted of stretches of 63 to 69 amino acids, while in the QX-like strains they contained 59 amino acids in length. An additional palmitoylation site was observed in CK/SWE/082066/2010 a QX-like strain. Primary structure data showed difference in the physical properties and hydrophobic nature of both genotypes. The comparison of secondary structures revealed no new structural domains in the genotypic variants. The phylogenetic analyses based on avian and mammalian coronaviruses showed the analysed IBV as closely related to turkey coronaviruses and distantly related to thrush and munia coronaviruses.</p> <p>Conclusion</p> <p>The study demonstrated that spike glycoprotein of the Massachusetts and the QX-like variants of IBV are molecularly distinct and that this may reflect in differences in the behavior of these viruses in vivo.</p
iPhosY-PseAAC: identify phosphotyrosine sites by incorporating sequence statistical moments into PseAAC
Molecular Structure, Biosynthesis, and Distribution of Coenzyme Q
Coenzyme Q is a very old molecule in evolutionary terms that has accumulated numerous functions in the cellular metabolism beyond its primordial function, the electron transport. In all organisms, coenzyme Q maintains a highly conserved structure allowing a localization inside cell membranes in a hydrophobic environment thanks to having an isoprenoid tail, and at the same time allows the polar ring benzene to interact with acceptors and electron donors. Coenzyme Q deficiency constitutes a group of mitochondrial diseases. Affected patients suffer mainly a decrease in energy production that induces dysfunctions in most organs and body systems. Current therapeutic alternatives are based on increasing coenzyme Q levels either through induction of endogenous mechanisms or exogenous supplementation. This chapter includes both aspects, the mechanisms associated with the coenzyme Q supplementation and the regulatory mechanisms of coenzyme Q biosynthesis. In terms of synthesis, the structure of coenzyme Q is complicated since it requires the participation of two well-differentiated pathways that must be carefully regulated. The synthesis is carried out through the participation of a multienzyme complex located in the inner mitochondrial membrane and controlled by different levels of regulation that at this time are not well-known
