26 research outputs found

    Systems-level immunomonitoring from acute to recovery phase of severe COVID-19

    No full text
    SUMMARY The immune response to SARS-CoV2 is under intense investigation, but not fully understood att this moment. Severe disease is characterized by vigorous inflammatory responses in the lung, often with a sudden onset after 5–7 days of stable disease. Efforts to modulate this hyperinflammation and the associated acute respiratory distress syndrome, rely on the unraveling of the immune cell interactions and cytokines that drive such responses. Systems-level analyses are required to simultaneously capture all immune cell populations and the many protein mediators by which cells communicate. Since every patient analyzed will be captured at different stages of his or her infection, longitudinal monitoring of the immune response is critical. Here we report on a systems-level blood immunomonitoring study of 39 adult patients, hospitalized with severe COVID-19 and followed with up to 14 blood samples from acute to recovery phases of the disease. We describe an IFNγ – Eosinophil axis activated prior to lung hyperinflammation and changes in cell-cell coregulation during different stages of the disease. We also map an immune trajectory during recovery that is shared among patients with severe COVID-19. HIGHLIGHTS Systems-level immunomonitoring from acute to recovery in severe COVID-19 An IFNγ - Eosinophil axis involved in lung hyperinflammation Cell-cell coregulation differ during four disease stages Basophils and hyperinflammation modulate humoral responses A shared trajectory of immunological recovery in severe COVID-1

    New evidence for balancing selection at the HLA-G locus in South Amerindians

    Get PDF
    HLA-G is a non-classical HLA (Human Leukocyte Antigen) molecule characterized by limited tissue distribution under normal physiological conditions and low variability at both DNA and protein levels. Several studies suggest that HLA-G could play a role, as an immunoregulatory molecule, in situations as diverse as transplantation, cancer, viral infections and inflammatory diseases. A total of 237 individuals from 21 South American tribes speaking nine different linguistic families were studied in relation to the 14 bp insertion/deletion polymorphism at the HLA-G gene. A consistent (seven in nine) excess of heterozygosity in samples classified by language was obtained. Our data supply evidences for balancing selection acting at the HLA-G 14 bp INDEL region. Enhanced fetal survival in a pathogen-rich environment may account for these findings
    corecore