46 research outputs found
Identifying unmet clinical need in hypertrophic cardiomyopathy using national electronic health records
Introduction: To evaluate unmet clinical need in unselected hypertrophic cardiomyopathy (HCM) patients to determine the risk of a wide range of subsequent cardiovascular disease endpoints and safety endpoints relevant for trial design. Methods: Population based cohort (CALIBER, linked primary care, hospital and mortality records in England, period 1997–2010), all people diagnosed with HCM were identified and matched by age, sex and general practice with ten randomly selected people without HCM. Random-effects Poisson models were used to assess the associations between HCM and cardiovascular diseases and bleeding. Results: Among 3,290,455 eligible people a diagnosis of hypertrophic cardiomyopathy was found in 4 per 10,000. Forty-one percent of the 1,160 individuals with hypertrophic cardiomyopathy were women and the median age was 57 years. The median follow-up was 4.0 years. Compared to general population controls, people with HCM had higher risk of ventricular arrhythmia (incidence rate ratio = 23.53, [95% confidence interval 12.67–43.72]), cardiac arrest or sudden cardiac death (6.33 [3.69–10.85]), heart failure (4.31, [3.30–5.62]), and atrial fibrillation (3.80 [3.04–4.75]). HCM was also associated with a higher incidence of myocardial infarction ([MI] 1.90 [1.27–2.84]) and coronary revascularisation (2.32 [1.46–3.69]).The absolute Kaplan-Meier risks at 3 years were 8.8% for the composite endpoint of cardiovascular death or heart failure, 8.4% for the composite of cardiovascular death, stroke or myocardial infarction, and 1.5% for major bleeding. Conclusions: Our study identified major unmet need in HCM and highlighted the importance of implementing improved cardiovascular prevention strategies to increase life-expectancy of the contemporary HCM population. They also show that national electronic health records provide an effective method for identifying outcomes and clinically relevant estimates of composite efficacy and safety endpoints essential for trial design in rare diseases
Increased expression of vascular endothelin type B and angiotensin type 1 receptors in patients with ischemic heart disease
<p>Abstract</p> <p>Background</p> <p>Endothelin-1 and angiotensin II are strong vasoconstrictors. Patients with ischemic heart disease have elevated plasma levels of endothelin-1 and angiotensin II and show increased vascular tone. The aim of the present study was to examine the endothelin and angiotensin II receptor expression in subcutaneous arteries from patients with different degrees of ischemic heart disease.</p> <p>Methods</p> <p>Subcutaneous arteries were obtained, by biopsy from the abdomen, from patients undergoing coronary artery bypass graft (CABG) surgery because of ischemic heart disease (n = 15), patients with angina pectoris without established myocardial infarction (n = 15) and matched cardiovascular healthy controls (n = 15). Endothelin type A (ET<sub>A</sub>) and type B (ET<sub>B</sub>), and angiotensin type 1 (AT<sub>1</sub>) and type 2 (AT<sub>2</sub>) receptors expression and function were examined using immunohistochemistry, Western blot and <it>in vitro </it>pharmacology.</p> <p>Results</p> <p>ET<sub>A </sub>and, to a lesser extent, ET<sub>B </sub>receptor staining was observed in the healthy vascular smooth muscle cells. The level of ET<sub>B </sub>receptor expression was higher in patients undergoing CABG surgery (250% ± 23%; P < 0.05) and in the patients with angina pectoris (199% ± 6%; P < 0.05), than in the healthy controls (100% ± 28%). The data was confirmed by Western blotting. Arteries from CABG patients showed increased vasoconstriction upon administration of the selective ET<sub>B </sub>receptor agonist sarafotoxin S6c, compared to healthy controls (P < 0.05). No such difference was found for the ET<sub>A </sub>receptors. AT<sub>1 </sub>and, to a lesser extent, AT<sub>2 </sub>receptor immunostaining was seen in the vascular smooth muscle cells. The level of AT<sub>1 </sub>receptor expression was higher in both the angina pectoris (128% ± 25%; P < 0.05) and in the CABG patients (203% ± 41%; P < 0.05), as compared to the healthy controls (100% ± 25%). The increased AT<sub>1 </sub>receptor expression was confirmed by Western blotting. Myograph experiment did however not show any change in vasoconstriction to angiotensin II in CABG patients compared to healthy controls (P = n.s).</p> <p>Conclusion</p> <p>The results demonstrate, for the first time, upregulation of ET<sub>B </sub>and AT<sub>1 </sub>receptors in vascular smooth muscle cells in ischemic heart disease. These receptors may play a role in the pathophysiology of ischemic heart disease and could provide important targets for pharmaceutical interventions.</p
Cigarette Smoke Upregulates Rat Coronary Artery Endothelin Receptors In Vivo
Background: Cigarette smoking is a strong cardiovascular risk factor and endothelin (ET) receptors are related to coronary artery diseases. The present study established an in vivo secondhand smoke (SHS) exposure model and investigated the hypothesis that cigarette smoke induces ET receptor upregulation in rat coronary arteries and its possible underlying mechanisms. Methodology/Principal Findings: Rats were exposed to SHS for 200 min daily for 8 weeks. The coronary arteries were isolated and examined. The vasoconstriction was studied by a sensitive myograph. The expression of mRNA and protein for receptors was examined by real-time PCR, Western blot and immunofluorescence. Compared to fresh air exposure, SHS increased contractile responses mediated by endothelin type A (ETA) and type B (ETB) receptors in coronary arteries. In parallel, the expression of mRNA and protein for ETA and ETB receptors of smoke exposed rats were higher than that of animals exposed to fresh air, suggesting that SHS upregulates ET A and ET B receptors in coronary arteries in vivo. Immunofluorescence staining showed that the enhanced receptor expression was localized to the smooth muscle cells of coronary arteries. The protein levels of phosphorylated (p)-Raf-1 and p-ERK1/2 in smoke exposed rats were significantly higher than in control rats, demonstrating that SHS induces the activation of the Raf/ERK/MAPK pathway. Treatment with Raf-1 inhibitor GW5074 suppressed SHS-induced enhanced contraction mediated by ET A receptors, and inhibited th
Up-regulation of endothelin type B receptors in the human internal mammary artery in culture is dependent on protein kinase C and mitogen-activated kinase signaling pathways
<p>Abstract</p> <p>Background</p> <p>Up-regulation of vascular endothelin type B (ET<sub>B</sub>) receptors is implicated in the pathogenesis of cardiovascular disease. Culture of intact arteries has been shown to induce similar receptor alterations and has therefore been suggested as a suitable method for, <it>ex vivo</it>, in detail delineation of the regulation of endothelin receptors. We hypothesize that mitogen-activated kinases (MAPK) and protein kinase C (PKC) are involved in the regulation of endothelin ET<sub>B </sub>receptors in human internal mammary arteries.</p> <p>Methods</p> <p>Human internal mammary arteries were obtained during coronary artery bypass graft surgery and were studied before and after 24 hours of organ culture, using <it>in vitro </it>pharmacology, real time PCR and Western blot techniques. Sarafotoxin 6c and endothelin-1 were used to examine the endothelin ET<sub>A </sub>and ET<sub>B </sub>receptor effects, respectively. The involvement of PKC and MAPK in the endothelin receptor regulation was examined by culture in the presence of antagonists.</p> <p>Results</p> <p>The endohtelin-1-induced contraction (after endothelin ET<sub>B </sub>receptor desensitization) and the endothelin ET<sub>A </sub>receptor mRNA expression levels were not altered by culture. The sarafotoxin 6c contraction, endothelin ET<sub>B </sub>receptor protein and mRNA expression levels were increased after organ culture. This increase was antagonized by; (1) PKC inhibitors (10 μM bisindolylmaleimide I and 10 μM Ro-32-0432), and (2) inhibitors of the p38, extracellular signal related kinases 1 and 2 (ERK1/2) and C-jun terminal kinase (JNK) MAPK pathways (10 μM SB203580, 10 μM PD98059 and 10 μM SP600125, respectively).</p> <p>Conclusion</p> <p>In conclusion, PKC and MAPK seem to be involved in the up-regulation of endothelin ET<sub>B </sub>receptor expression in human internal mammary arteries. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the development of vascular endothelin ET<sub>B </sub>receptor changes in cardiovascular disease.</p
T2-weighted cardiovascular magnetic resonance in acute cardiac disease
Cardiovascular magnetic resonance (CMR) using T2-weighted sequences can visualize myocardial edema. When compared to previous protocols, newer pulse sequences with substantially improved image quality have increased its clinical utility. The assessment of myocardial edema provides useful incremental diagnostic and prognostic information in a variety of clinical settings associated with acute myocardial injury. In patients with acute chest pain, T2-weighted CMR is able to identify acute or recent myocardial ischemic injury and has been employed to distinguish acute coronary syndrome (ACS) from non-ACS as well as acute from chronic myocardial infarction
