12 research outputs found

    Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays

    Get PDF
    One-dimensional crystal growth enables the epitaxial integration of III-V compound semiconductors onto a silicon (Si) substrate despite significant lattice mismatch. Here, we report a short-wavelength infrared (SWIR, 1.4-3 mu m) photodetector that employs InAs nanowires (NWs) grown on Si. The wafer-scale epitaxial InAs NWs form on the Si substrate without a metal catalyst or pattern assistance; thus, the growth is free of metal-atom-induced contaminations, and is also cost-effective. InAs NW arrays with an average height of 50 mu m provide excellent anti-reflective and light trapping properties over a wide wavelength range. The photodetector exhibits a peak detectivity of 1.9 x 10(8) cm.Hz(1/2)/W for the SWIR band at 77 K and operates at temperatures as high as 220 K. The SWIR photodetector on the Si platform demonstrated in this study is promising for future low-cost optical sensors and Si photonicsopen0

    In situ–Directed Growth of Organic Nanofibers and Nanoflakes: Electrical and Morphological Properties

    Get PDF
    Organic nanostructures made from organic molecules such as para-hexaphenylene (p-6P) could form nanoscale components in future electronic and optoelectronic devices. However, the integration of such fragile nanostructures with the necessary interface circuitry such as metal electrodes for electrical connection continues to be a significant hindrance toward their large-scale implementation. Here, we demonstrate in situ–directed growth of such organic nanostructures between pre-fabricated contacts, which are source–drain gold electrodes on a transistor platform (bottom-gate) on silicon dioxide patterned by a combination of optical lithography and electron beam lithography. The dimensions of the gold electrodes strongly influence the morphology of the resulting structures leading to notably different electrical properties. The ability to control such nanofiber or nanoflake growth opens the possibility for large-scale optoelectronic device fabrication

    Mass transport model for semiconductor nanowire growth

    No full text
    We present a mass transport model based on surface diffusion for metal-particle-assisted nanowire growth. The model explains the common observation that for III/V materials thinner nanowires are longer than thicker ones. We have grown GaP nanowires by metal-organic vapor phase epitaxy and compared our model calculations with the experimental nanowire lengths and radii. Moreover, we demonstrate that the Gibbs-Thomson effect can be neglected for III/V nanowires grown at conventional temperatures and pressures

    Epitaxially grown GaP/GaAs1-xPx/GaP double heterostructure nanowires for optical applications

    No full text
    We demonstrate metal organic vapour phase epitaxy growth of GaP/GaAs1-xPx/GaP double heterostructure nanowires on GaP(111)B, and report bright photoluminescence at room temperature. By using different PH3 to AsH3 flow ratios during growth of the GaAs1-xPx segment, we are able to control the composition of the segment, making it feasible to tune the wavelength of the emitted light. A photoluminescence system was employed to characterize the luminescence, and x-ray energy dispersive spectrometry and x-ray diffraction studies were used to investigate the composition of the segment. These double heterostructure nanowires could in the future be used in optoelectronic devices and as multi pie-wavelength fluorescent markers for biomedical applications

    Structural properties of (111)B-oriented III-V nanowires

    No full text
    Controlled growth of nanowires is an important, emerging research field with many applications in, for example, electronics, photonics, and life sciences. Nanowires of zinc blende crystal structure, grown in the left fence111right fenceB direction, which is the favoured direction of growth, usually have a large number of twin-plane defects. Such defects limit the performance of optoelectronic nanowire-based devices. To investigate this defect formation, we examine GaP nanowires grown by metal-organic vapour-phase epitaxy. We show that the nanowire segments between the twin planes are of octahedral shape and are terminated by {111} facets, resulting in a microfaceting of the nanowires. We discuss these findings in a nucleation context, where we present an idea on how the twin planes form. This investigation contributes to the understanding of defect formation in nanowires. One future prospect of such knowledge is to determine strategies on how to control the crystallinity of nanowires

    Spatially resolved Hall effect measurement in a single semiconductor nanowire

    No full text
    Efficient light-emitting diodes and photovoltaic energy-harvesting devices are expected to play an important role in the continued efforts towards sustainable global power consumption. Semiconductor nanowires are promising candidates as the active components of both light-emitting diodes1, 2, 3, 4, 5, 6 and photovoltaic cells7, 8, 9, 10, primarily due to the added freedom in device design offered by the nanowire geometry. However, for nanowire-based components to move past the proof-of-concept stage and be implemented in production-grade devices, it is necessary to precisely quantify and control fundamental material properties such as doping and carrier mobility. Unfortunately, the nanoscale geometry that makes nanowires interesting for applications also makes them inherently difficult to characterize. Here, we report a method to carry out Hall measurements on single core–shell nanowires. Our technique allows spatially resolved and quantitative determination of the carrier concentration and mobility of the nanowire shell. As Hall measurements have previously been completely unavailable for nanowires, the experimental platform presented here should facilitate the implementation of nanowires in advanced practical devices
    corecore