7,221 research outputs found

    Architecture-independent power bound for vibration energy harvesters

    No full text
    The maximum output power of energy harvesters driven by harmonic vibrations is well known for a range of specific harvester architectures. An architecture-independent bound based on the mechanical input-power also exists and gives a strict limit on achievable power with one mechanical degree of freedom, but is a least upper bound only for lossless devices. We report a new theoretical bound on the output power of vibration energy harvesters that includes parasitic, linear mechanical damping while still being architecture independent. This bound greatly improves the previous bound at moderate force amplitudes and is compared to the performance of established harvester architectures which are shown to agree with it in limiting cases. The bound is a hard limit on achievable power with one mechanical degree of freedom and can not be circumvented by transducer or power-electronic-interface design

    Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: Private water systems are more likely to have nitrate levels above the maximum contaminant level (MCL). Pregnant women are considered vulnerable to the effects of exposure to high levels of nitrates in drinking water due to their altered physiological states. The level of methemoglobin in the blood is the biomarker often used in research for assessing exposure to nitrates. The objective of this study was to assess methemoglobin levels and examine how various factors affected methemoglobin levels during pregnancy. We also examined whether differences in water use practices existed among pregnant women based on household drinking water source of private vs. public supply. METHODS: A longitudinal study of 357 pregnant women was conducted. Longitudinal regression models were used to examine changes and predictors of the change in methemoglobin levels over the period of gestation. RESULTS: Pregnant women showed a decrease in methemoglobin levels with increasing gestation although <1% had levels above the physiologic normal of 2% methemoglobin, regardless of the source of their drinking water. The multivariable analyses did not show a statistically significant association between methemoglobin levels and the estimated nitrate intake from tap water among pregnant women around 36 weeks gestation (β = 0.046, p = 0.986). Four women had tap water nitrate levels above the MCL of 10 mg/L. At enrollment, a greater proportion of women who reported using water treatment devices were private wells users (66%) compared to public system users (46%) (p < 0.0001). Also, a greater proportion of private well users (27%) compared to public system users (13%) were using devices capable of removing nitrate from water (p < 0.0001). CONCLUSION: Pregnant women potentially exposed to nitrate levels primarily below the MCL for drinking water were unlikely to show methemoglobin levels above the physiologic normal. Water use practices such as the use of treatment devices to remove nitrates varied according to water source and should be considered in the assessment of exposure to nitrates in future studies

    Aiding the design of radiation resistant materials with multiphysics simulations of damage processes

    No full text
    The design of metals and alloys resistant to radiation damage involves the physics of electronic excitations and the creation of defects and microstructure. During irradiation damage of metals by high energy particles, energy is exchanged between ions and electrons. Such non-adiabatic processes violate the Born-Oppenheimer approximation, on which all conservative classical interatomic potentials rest. By treating the electrons of a metal explicitly and quantum mechanically we are able to explore the influence of electronic excitations on the ionic motion during irradiation damage. Simple theories suggest that moving ions should feel a damping force proportional to their velocity and directly opposed to it. In contrast, our simulations of a forced oscillating ion have revealed the full complexity of this force: in reality it is anisotropic and dependent on the ion velocity and local atomic environment. A large set of collision cascade simulations has allowed us to explore the form of the damping force further. We have a means of testing various schemes in the literature for incorporating such a force within molecular dynamics (MD) against our semi-classical evolution with explicitly modelled electrons. We find that a model in which the damping force is dependent upon the local electron density is superior to a simple fixed damping model. We also find that applying a lower kinetic energy cut-off for the damping force results in a worse model. A detailed examination of the nature of the forces reveals that there is much scope for further improving the electronic force models within MD. © 2010 Materials Research Society.Accepted versio

    New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range

    Full text link
    We survey the phenomenological constraints on abelian gauge bosons having masses in the MeV to multi-GeV mass range (using precision electroweak measurements, neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy neutron scattering and primordial nucleosynthesis). We compute their implications for the three parameters that in general describe the low-energy properties of such bosons: their mass and their two possible types of dimensionless couplings (direct couplings to ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge bosons with very small couplings to ordinary fermions in this mass range are natural in string compactifications and are likely to be generic in theories for which the gravity scale is systematically smaller than the Planck mass - such as in extra-dimensional models - because of the necessity to suppress proton decay. Furthermore, because its couplings are weak, in the low-energy theory relevant to experiments at and below TeV scales the charge gauged by the new boson can appear to be broken, both by classical effects and by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly cancellation does not also require the introduction of new light fermions in the low-energy theory. Furthermore, the charge can appear to be conserved in the low-energy theory, despite the corresponding gauge boson having a mass. Our results reduce to those of other authors in the special cases where there is no kinetic mixing or there is no direct coupling to ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which appears in JHE

    Inflation with Non-minimal Gravitational Couplings and Supergravity

    Get PDF
    We explore in the supergravity context the possibility that a Higgs scalar may drive inflation via a non-minimal coupling to gravity characterised by a large dimensionless coupling constant. We find that this scenario is not compatible with the MSSM, but that adding a singlet field (NMSSM, or a variant thereof) can very naturally give rise to slow-roll inflation. The inflaton is necessarily contained in the doublet Higgs sector and occurs in the D-flat direction of the two Higgs doublets.Comment: 13 pages, 1 figur

    Influence de la fertilisation minérale sur la qualité physico-chimique et organoleptique du jus d’ananas transformé de Cayenne lisse au Bénin

    Get PDF
    L’objectif de l’étude est d’analyser l’influence de la fertilisation N, P et K sur les caractéristiques physico-chimique et organoleptique du jus Cayenne lisse produit au Bénin. Un essai en plan factoriel NPK complet a été installé à Soyo, un village de la commune d’Allada du Département de l’Atlantique en République du Bénin. Les traitements NPK appliqués en unités fertilisantes exprimées en g/plant et randomisés dans quatre blocs ont été les suivants : T1: 6,7-1,6-9,3 ; T2 : 2,7-2,7-2,7 ; T3: 10,7- 0,5-2,7 ;T5: 10,7- 2,7-16 ; T6: 2,7- 2,7-16 ; T7: 2,7- 2,7-16 ; T8: 10,7-2,7-2,7 ; T9:2,7-0,5-2,7 ;T10: 10,7- 0,5-16. Le degré Brix du jus a été déterminé au réfractomètre et le pH au pH-mètre. Une évaluation des caractéristiques sensorielles telles que le goût sucré, le goût acide et l’arôme du jus d’ananas fabriqué a été effectuée par un panel de dégustateurs sélectionnés et entraînés. Une analyse en composantes principales, suivie d’une classification numérique a été réalisée sur les caractéristiques sensorielles et physico-chimiques des fruits. Les traitements T1, T3, T5 et T6 ont permis d’obtenir des jus de qualité organoleptique appréciable.Mots clés : Intensification, Rendement, Jus, Evaluation sensorielle, Fumure, Allada
    • …
    corecore