233 research outputs found
Predictors of betel quid chewing behavior and cessation patterns in Taiwan aborigines
BACKGROUND: Betel quid, chewed by about 600 million people worldwide, is one of the most widely used addictive substances. Cessation factors in betel quid chewers are unknown. The present study explores prevalence and the quit rate of betel quid chewing in Taiwan aborigines. Our goal was to delineate potential predictors of chewing cessation. METHODS: A stratified random community-based survey was designed for the entire aborigines communities in Taiwan. A total of 7144 participants were included between June 2003 and May 2004 in this study. Information on sociodemographic characteristics, such as gender, age, obesity, education years, marital status, ethnicity, and habits of betel quid chewing, smoking and drinking was collected by trained interviewers. RESULTS: The prevalence of betel quid chewers was 46.1%. Betel quid chewing was closely associated with obesity (OR = 1.61; 95% CI: 1.40–1.85). Betel quid chewers were most likely to use alcohol and cigarettes together. Quit rate of betel quid chewers was 7.6%. Betel quid chewers who did not drink alcohol were more likely to quit (OR = 1.89; 95% CI: 1.43–2.50). Alcohol use is a significant factor related to cessation of betel quid chewing, but smoking is not. CONCLUSION: Taiwan aborigines have a high prevalence of betel quid chewers and a low quit rate. Alcohol use is strongly association with betel quid chewing. Efforts to reduce habitual alcohol consumption might be of benefit in cessation of betel quid chewing
Clinical correlation of nonalcoholic fatty liver disease in a Chinese taxi drivers population in Taiwan: Experience at a teaching hospital
<p>Abstract</p> <p>Background</p> <p>To explore any gender-related differences in the prevalence of conditions-associated with non-alcoholic fatty liver disease (NAFLD) among Taiwanese taxi drivers in Taipei, Taiwan.</p> <p>Methods</p> <p>We studied 1635 healthy taxi drivers (1541 males and 94 females) who volunteered for physical check-ups in 2006. Blood samples and ultrasound fatty liver sonography results were collected.</p> <p>Results</p> <p>The prevalence of NAFLD was 66.4% and revealed no statistically significant decrease with increasing age (p = 0.58). Males exhibited a greater prevalence of NAFLD than did females (67.5% vs 47.9%, p < 0.0001). Gender-related differences for associated factors were found. For males, hypertension, hyperuricemia, higher AST, higher ALT, hypertriglyceridemia, and higher fasting plasma glucose were significantly related to NAFLD. These conditions were not sigfinicantly related to NAFLD in females.</p> <p>Conclusion</p> <p>Several gender-related differences were noted for NAFLD among Taiwanese taxi drivers.</p
The Interplay between NF-kappaB and E2F1 Coordinately Regulates Inflammation and Metabolism in Human Cardiac Cells
Pyruvate dehydrogenase kinase 4 (PDK4) inhibition by nuclear factor-κB (NF-κB) is related to a shift towards increased glycolysis during cardiac pathological processes such as cardiac hypertrophy and heart failure. The transcription factors estrogen-related receptor-α (ERRα) and peroxisome proliferator-activated receptor (PPAR) regulate PDK4 expression through the potent transcriptional coactivator PPARγ coactivator-1α (PGC-1α). NF-κB activation in AC16 cardiac cells inhibit ERRα and PPARβ/δ transcriptional activity, resulting in reduced PGC-1α and PDK4 expression, and an enhanced glucose oxidation rate. However, addition of the NF-κB inhibitor parthenolide to these cells prevents the downregulation of PDK4 expression but not ERRα and PPARβ/δ DNA binding activity, thus suggesting that additional transcription factors are regulating PDK4. Interestingly, a recent study has demonstrated that the transcription factor E2F1, which is crucial for cell cycle control, may regulate PDK4 expression. Given that NF-κB may antagonize the transcriptional activity of E2F1 in cardiac myocytes, we sought to study whether inflammatory processes driven by NF-κB can downregulate PDK4 expression in human cardiac AC16 cells through E2F1 inhibition. Protein coimmunoprecipitation indicated that PDK4 downregulation entailed enhanced physical interaction between the p65 subunit of NF-κB and E2F1. Chromatin immunoprecipitation analyses demonstrated that p65 translocation into the nucleus prevented the recruitment of E2F1 to the PDK4 promoter and its subsequent E2F1-dependent gene transcription. Interestingly, the NF-κB inhibitor parthenolide prevented the inhibition of E2F1, while E2F1 overexpression reduced interleukin expression in stimulated cardiac cells. Based on these findings, we propose that NF-κB acts as a molecular switch that regulates E2F1-dependent PDK4 gene transcription
Deleted in Liver Cancer 2 (DLC2) Was Dispensable for Development and Its Deficiency Did Not Aggravate Hepatocarcinogenesis
DLC2 (deleted in liver cancer 2), a Rho GTPase-activating protein, was previously shown to be underexpressed in human hepatocellular carcinoma and has tumor suppressor functions in cell culture models. We generated DLC2-deficient mice to investigate the tumor suppressor role of DLC2 in hepatocarcinogenesis and the function of DLC2 in vivo. In this study, we found that, unlike homologous DLC1, which is essential for embryonic development, DLC2 was dispensable for embryonic development and DLC2-deficient mice could survive to adulthood. We also did not observe a higher incidence of liver tumor formation or diethylnitrosamine (DEN)-induced hepatocarcinogenesis in DLC2-deficient mice. However, we observed that DLC2-deficient mice were smaller and had less adipose tissue than the wild type mice. These phenotypes were not due to reduction of cell size or defect in adipogenesis, as observed in the 190B RhoGAP-deficient mouse model. Together, these results suggest that deficiency in DLC2 alone does not enhance hepatocarcinogenesis
Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation
Possible changes in Atlantic meridional overturning circulation (AMOC) provide a key source of uncertainty regarding future climate change. Maps of temperature trends over the twentieth century show a conspicuous region of cooling in the northern Atlantic. Here we present multiple lines of evidence suggesting that this cooling may be due to a reduction in the AMOC over the twentieth century and particularly after 1970. Since 1990 the AMOC seems to have partly recovered. This time evolution is consistently suggested by an AMOC index based on sea surface temperatures, by the hemispheric temperature difference, by coral-based proxies and by oceanic measurements. We discuss a possible contribution of the melting of the Greenland Ice Sheet to the slowdown. Using a multi-proxy temperature reconstruction for the AMOC index suggests that the AMOC weakness after 1975 is an unprecedented event in the past millennium (p > 0.99). Further melting of Greenland in the coming decades could contribute to further weakening of the AMOC
Targeted p120-Catenin Ablation Disrupts Dental Enamel Development
Dental enamel development occurs in stages. The ameloblast cell layer is adjacent to, and is responsible for, enamel formation. When rodent pre-ameloblasts become tall columnar secretory-stage ameloblasts, they secrete enamel matrix proteins, and the ameloblasts start moving in rows that slide by one another. This movement is necessary to form the characteristic decussating enamel prism pattern. Thus, a dynamic system of intercellular interactions is required for proper enamel development. Cadherins are components of the adherens junction (AJ), and they span the cell membrane to mediate attachment to adjacent cells. p120 stabilizes cadherins by preventing their internalization and degradation. So, we asked if p120-mediated cadherin stability is important for dental enamel formation. Targeted p120 ablation in the mouse enamel organ had a striking effect. Secretory stage ameloblasts detached from surrounding tissues, lost polarity, flattened, and ameloblast E- and N-cadherin expression became undetectable by immunostaining. The enamel itself was poorly mineralized and appeared to be composed of a thin layer of merged spheres that abraded from the tooth. Significantly, p120 mosaic mouse teeth were capable of forming normal enamel demonstrating that the enamel defects were not a secondary effect of p120 ablation. Surprisingly, blood-filled sinusoids developed in random locations around the developing teeth. This has not been observed in other p120-ablated tissues and may be due to altered p120-mediated cell signaling. These data reveal a critical role for p120 in tooth and dental enamel development and are consistent with p120 directing the attachment and detachment of the secretory stage ameloblasts as they move in rows
Optical imaging in vivo with a focus on paediatric disease: technical progress, current preclinical and clinical applications and future perspectives
To obtain information on the occurrence and location of molecular events as well as to track target-specific probes such as antibodies or peptides, drugs or even cells non-invasively over time, optical imaging (OI) technologies are increasingly applied. Although OI strongly contributes to the advances made in preclinical research, it is so far, with the exception of optical coherence tomography (OCT), only very sparingly applied in clinical settings. Nevertheless, as OI technologies evolve and improve continuously and represent relatively inexpensive and harmful methods, their implementation as clinical tools for the assessment of children disease is increasing. This review focuses on the current preclinical and clinical applications as well as on the future potential of OI in the clinical routine. Herein, we summarize the development of different fluorescence and bioluminescence imaging techniques for microscopic and macroscopic visualization of microstructures and biological processes. In addition, we discuss advantages and limitations of optical probes with distinct mechanisms of target-detection as well as of different bioluminescent reporter systems. Particular attention has been given to the use of near-infrared (NIR) fluorescent probes enabling observation of molecular events in deeper tissue
- …