142 research outputs found

    Amplicon-based next-generation sequencing of plasma cell-free DNA for detection of driver and resistance mutations in advanced non-small cell lung cancer

    Get PDF
    BACKGROUND: Genomic analysis of plasma cell-free DNA is transforming lung cancer care; however, available assays are limited by cost, turnaround time, and imperfect accuracy. Here, we study amplicon-based plasma next-generation sequencing (NGS), rather than hybrid-capture-based plasma NGS, hypothesizing this would allow sensitive detection and monitoring of driver and resistance mutations in advanced non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: Plasma samples from patients with NSCLC and a known targetable genotype (EGFR, ALK/ROS1, and other rare genotypes) were collected while on therapy and analyzed blinded to tumor genotype. Plasma NGS was carried out using enhanced tagged amplicon sequencing of hotspots and coding regions from 36 genes, as well as intronic coverage for detection of ALK/ROS1 fusions. Diagnostic accuracy was compared with plasma droplet digital PCR (ddPCR) and tumor genotype. RESULTS: A total of 168 specimens from 46 patients were studied. Matched plasma NGS and ddPCR across 120 variants from 80 samples revealed high concordance of allelic fraction (R2 = 0.95). Pretreatment, sensitivity of plasma NGS for the detection of EGFR driver mutations was 100% (30/30), compared with 87% for ddPCR (26/30). A full spectrum of rare driver oncogenic mutations could be detected including sensitive detection of ALK/ROS1 fusions (8/9 detected, 89%). Studying 25 patients positive for EGFR T790M that developed resistance to osimertinib, 15 resistance mechanisms could be detected including tertiary EGFR mutations (C797S, Q791P) and mutations or amplifications of non-EGFR genes, some of which could be detected pretreatment or months before progression. CONCLUSIONS: This blinded analysis demonstrates the ability of amplicon-based plasma NGS to detect a full range of targetable genotypes in NSCLC, including fusion genes, with high accuracy. The ability of plasma NGS to detect a range of preexisting and acquired resistance mechanisms highlights its potential value as an alternative to single mutation digital PCR-based plasma assays for personalizing treatment of TKI resistance in lung cancer

    Receptor Tyrosine Kinase (RTK) Mediated Tyrosine Phosphor-Proteome from Drosophila S2 (ErbB1) Cells Reveals Novel Signaling Networks

    Get PDF
    Protein phosphorylation mediates many critical cellular responses and is essential for many biological functions during development. About one-third of cellular proteins are phosphorylated, representing the phosphor-proteome, and phosphorylation can alter a protein's function, activity, localization and stability. Tyrosine phosphorylation events mediated by aberrant activation of Receptor Tyrosine Kinase (RTK) pathways have been proven to be involved in the development of several diseases including cancer. To understand the systems biology of RTK activation, we have developed a phosphor-proteome focused on tyrosine phosphorylation events under insulin and EGF signaling pathways using the PhosphoScan® technique coupled with high-throughput mass spectrometry analysis. Comparative proteomic analyses of all these tyrosine phosphorylation events revealed that around 70% of these pY events are conserved in human orthologs and paralogs. A careful analysis of published in vivo tyrosine phosphorylation events from literature and patents revealed that around 38% of pY events from Drosophila proteins conserved on 185 human proteins are confirmed in vivo tyrosine phosphorylation events. Hence the data are validated partially based on available reports, and the credibility of the remaining 62% of novel conserved sites that are unpublished so far is very high but requires further follow-up studies. The novel pY events found in this study that are conserved on human proteins could potentially lead to the discovery of drug targets and biomarkers for the detection of various cancers and neurodegenerative diseases

    Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer.

    Get PDF
    The early detection of breast cancer is the best means to minimise disease-related mortality. Current screening techniques have limited sensitivity and specificity. Breast nipple aspirate fluid can be obtained noninvasively and contains proteins secreted from ductal and lobular epithelia. Nipple aspirate fluid proteins are breast specific and generally more concentrated than corresponding blood levels. Proteomic analysis of 1 microl of diluted nipple aspirate fluid over a 5-40 kDa range from 20 subjects with breast cancer and 13 with nondiseased breasts identified five differentially expressed proteins. The most sensitive and specific proteins were 6500 and 15 940 Da, found in 75-84% of samples from women with cancer but in only 0-9% of samples from normal women. These findings suggest that (1) differential expression of nipple aspirate fluid proteins exists between women with normal and diseased breasts, and (2) analysis of these proteins may predict the presence of breast cancer

    Inferring signalling networks from longitudinal data using sampling based approaches in the R-package 'ddepn'

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Network inference from high-throughput data has become an important means of current analysis of biological systems. For instance, in cancer research, the functional relationships of cancer related proteins, summarised into signalling networks are of central interest for the identification of pathways that influence tumour development. Cancer cell lines can be used as model systems to study the cellular response to drug treatments in a time-resolved way. Based on these kind of data, modelling approaches for the signalling relationships are needed, that allow to generate hypotheses on potential interference points in the networks.</p> <p>Results</p> <p>We present the R-package 'ddepn' that implements our recent approach on network reconstruction from longitudinal data generated after external perturbation of network components. We extend our approach by two novel methods: a Markov Chain Monte Carlo method for sampling network structures with two edge types (activation and inhibition) and an extension of a prior model that penalises deviances from a given reference network while incorporating these two types of edges. Further, as alternative prior we include a model that learns signalling networks with the scale-free property.</p> <p>Conclusions</p> <p>The package 'ddepn' is freely available on R-Forge and CRAN <url>http://ddepn.r-forge.r-project.org</url>, <url>http://cran.r-project.org</url>. It allows to conveniently perform network inference from longitudinal high-throughput data using two different sampling based network structure search algorithms.</p

    S100A6 (Calcyclin) is a prostate basal cell marker absent in prostate cancer and its precursors

    Get PDF
    S100A6 (Calcyclin) is a calcium-binding protein that has been implicated in a variety of biological functions as well as tumorigenesis. The aim of our study was to investigate the involvement of S100A6 during prostate cancer development and progression. Using immunohistochemistry, the expression of S100A6 was examined in benign (n ¼ 66), premalignant (n ¼ 10), malignant (n ¼ 66) and metastatic prostate (n ¼ 5) tissues arranged in a tissue-microarray or whole sections as well as in prostate cancer cell lines. The S100A6 immunostaining pattern in tissues was compared with that of cytokeratin 5 (a basal cell marker) and 18 (a benign luminal cell marker). In all cases of benign epithelium, intense S100A6 expression was seen in the basal cell layer with absent staining in luminal cells. In all cases of prostatic adenocarcinoma (matched), metastatic lesions and 3/10 high-grade prostatic intraepithelial neoplasia lesions, an absence of S100A6 was seen. Western blotting and RT–PCR analysis of cell lines showed S100A6 expression to be absent in LNCaP, LNCaP-LN3 and LNCaP-Pro5 but present in Du145, PC3, PC-3M and PC-3M-LN4. LNCaP cells treated with 5- Azacytidine, caused re-expression of S100A6 mRNA. Sequencing of bisulphite modified DNA showed CpG methylation within the S100A6 promoter region and exon 1 of LNCaP, LNCaP-LN3 and LNCaP-Pro5 cell lines but not in Du145 cells. Our data suggest that loss of S100A6 protein expression is common in prostate cancer development and may occur at an early stage. The mechanism of loss of expression may involve hypermethylation of CpG sites. The finding of intense S100A6 expression in the basal cells of benign glands but loss of expression in cancer could be useful as a novel diagnostic marker for prostate cancer

    Absence of annexin I expression in B-cell non-Hodgkin's lymphomas and cell lines

    Get PDF
    BACKGROUND: Annexin I, one of the 20 members of the annexin family of calcium and phospholipid-binding proteins, has been implicated in diverse biological processes including signal transduction, mediation of apoptosis and immunosuppression. Previous studies have shown increased annexin I expression in pancreatic and breast cancers, while it is absent in prostate and esophageal cancers. RESULTS: Data presented here show that annexin I mRNA and protein are undetectable in 10 out of 12 B-cell lymphoma cell lines examined. Southern blot analysis indicates that the annexin I gene is intact in B-cell lymphoma cell lines. Aberrant methylation was examined as a cause for lack of annexin I expression by treating cells 5-Aza-2-deoxycytidine. Reexpression of annexin I was observed after prolonged treatment with the demethylating agent indicating methylation may be one of the mechanisms of annexin I silencing. Treatment of Raji and OMA-BL-1 cells with lipopolysaccharide, an inflammation inducer, and with hydrogen peroxide, a promoter of oxidative stress, also failed to induce annexin I expression. Annexin I expression was examined in primary lymphoma tissues by immunohistochemistry and presence of annexin I in a subset of normal B-cells and absence of annexin I expression in the lymphoma tissues were observed. These results show that annexin I is expressed in normal B-cells, and its expression is lost in all primary B-cell lymphomas and 10 of 12 B-cell lymphoma cell lines. CONCLUSIONS: Our results suggest that, similar to prostate and esophageal cancers, annexin I may be an endogenous suppressor of cancer development, and loss of annexin I may contribute to B-cell lymphoma development

    Human Cell Chips: Adapting DNA Microarray Spotting Technology to Cell-Based Imaging Assays

    Get PDF
    Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR), subcellular localization (nuclear translocation of NFκB) and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases) in response to treatment by several chemical effectors (anisomycin, TNFα, and interferon), and we demonstrate scalability by printing a chip with ∼4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability

    Discovery of New Molecular Subtypes in Oesophageal Adenocarcinoma

    Get PDF
    A large number of patients suffering from oesophageal adenocarcinomas do not respond to conventional chemotherapy; therefore, it is necessary to identify new predictive biomarkers and patient signatures to improve patient outcomes and therapy selections. We analysed 87 formalin-fixed and paraffin-embedded (FFPE) oesophageal adenocarcinoma tissue samples with a reverse phase protein array (RPPA) to examine the expression of 17 cancer-related signalling molecules. Protein expression levels were analysed by unsupervised hierarchical clustering and correlated with clinicopathological parameters and overall patient survival. Proteomic analyses revealed a new, very promising molecular subtype of oesophageal adenocarcinoma patients characterised by low levels of the HSP27 family proteins and high expression of those of the HER family with positive lymph nodes, distant metastases and short overall survival. After confirmation in other independent studies, our results could be the foundation for the development of a Her2-targeted treatment option for this new patient subgroup of oesophageal adenocarcinoma
    corecore