396 research outputs found
Controlling Curie temperature in (Ga,Ms)As through location of the Fermi level within the impurity band
The ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied
material for prototype applications in semiconductor spintronics. Because
ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has
direct and crucial bearing on its Curie temperature TC. It is vigorously
debated, however, whether holes in (Ga,Mn)As reside in the valence band or in
an impurity band. In this paper we combine results of channeling experiments,
which measure the concentrations both of Mn ions and of holes relevant to the
ferromagnetic order, with magnetization, transport, and magneto-optical data to
address this issue. Taken together, these measurements provide strong evidence
that it is the location of the Fermi level within the impurity band that
determines TC through determining the degree of hole localization. This finding
differs drastically from the often accepted view that TC is controlled by
valence band holes, thus opening new avenues for achieving higher values of TC.Comment: 5 figures, supplementary material include
A Knockout of the Tsg101 Gene Leads to Decreased Expression of ErbB Receptor Tyrosine Kinases and Induction of Autophagy Prior to Cell Death
The Tumor Susceptibility Gene 101 (Tsg101) encodes a multi-domain protein that mediates a variety of molecular and biological processes including the trafficking and lysosomal degradation of cell surface receptors. Conventional and conditional knockout models have demonstrated an essential requirement of this gene for cell cycle progression and cell viability, but the consequences of a complete ablation of Tsg101 on intracellular processes have not been examined to date. In this study, we employed mouse embryonic fibroblasts that carry two Tsg101 conditional knockout alleles to investigate the expression of ErbB receptor tyrosine kinases as well as stress-induced intracellular processes that are known to be associated with a defect in growth and cell survival. The conditional deletion of the Tsg101 gene in this well-controlled experimental model resulted in a significant reduction in the steady-state levels of the EGFR and ErbB2 but a stress-induced elevation in the phosphorylation of mitogen activated protein (MAP) kinases independent of growth factor stimulation. As part of an integrated stress response, Tsg101-deficient cells exhibited extensive remodeling of actin filaments and greatly enlarged lysosomes that were enriched with the autophagy-related protein LC3. The increase in the transcriptional activation and expression of LC3 and its association with Lamp1-positive lysosomes in a PI3K-dependent manner suggest that Tsg101 knockout cells utilize autophagy as a survival mechanism prior to their ultimate death. Collectively, this study shows that a knockout of the Tsg101 gene causes complex intracellular changes associated with stress response and cell death. These multifaceted alterations need to be recognized as they have an impact on defining particular functions for Tsg101 in processes such as signal transduction and lysosomal/endosomal trafficking
Localisation of RNAs into the germ plasm of vitellogenic xenopus oocytes
We have studied the localisation of mRNAs in full-grown Xenopus laevis oocytes by injecting fluorescent RNAs, followed by confocal microscopy of the oocyte cortex. Concentrating on RNA encoding the Xenopus Nanos homologue, nanos1 (formerly Xcat2), we find that it consistently localised into aggregated germ plasm ribonucleoprotein (RNP) particles, independently of cytoskeletal integrity. This implies that a diffusion/entrapment-mediated mechanism is active, as previously reported for previtellogenic oocytes. Sometimes this was accompanied by localisation into scattered particles of the “late”, Vg1/VegT pathway; occasionally only late pathway localisation was seen. The Xpat RNA behaved in an identical fashion and for neither RNA was the localisation changed by any culture conditions tested. The identity of the labelled RNP aggregates as definitive germ plasm was confirmed by their inclusion of abundant mitochondria and co-localisation with the germ plasm protein Hermes. Further, the nanos1/Hermes RNP particles are interspersed with those containing the germ plasm protein Xpat. These aggregates may be followed into the germ plasm of unfertilized eggs, but with a notable reduction in its quantity, both in terms of injected molecules and endogenous structures. Our results conflict with previous reports that there is no RNA localisation in large oocytes, and that during mid-oogenesis even germ plasm RNAs localise exclusively by the late pathway. We find that in mid oogenesis nanos1 RNA also localises to germ plasm but also by the late pathway. Late pathway RNAs, Vg1 and VegT, also may localise into germ plasm. Our results support the view that mechanistically the two modes of localisation are extremely similar, and that in an injection experiment RNAs might utilise either pathway, the distinction in fates being very subtle and subject to variation. We discuss these results in relation to their biological significance and the results of others
Adult mortality of diseases and injuries attributable to selected metabolic, lifestyle, environmental, and infectious risk factors in Taiwan: A comparative risk assessment
Background: To facilitate priority-setting in health policymaking, we compiled the best available information to estimate the adult mortality (>30 years) burden attributable to 13 metabolic, lifestyle, infectious, and environmental risk factors in Taiwan. Methods: We obtained data on risk factor exposure from nationally representative health surveys, cause-specific mortality from the National Death Registry, and relative risks from epidemiological studies and meta-analyses. We applied the comparative risk assessment framework to estimate mortality burden attributable to individual risk factors or risk factor clusters. Results: In 2009, high blood glucose accounted for 14,900 deaths (95% UI: 11,850-17,960), or 10.4% of all deaths in that year. It was followed by tobacco smoking (13,340 deaths, 95% UI: 10,330-16,450), high blood pressure (11,190 deaths, 95% UI: 8,190-14,190), ambient particulate matter pollution (8,600 deaths, 95% UI: 7,370-9,840), and dietary risks (high sodium intake and low intake of fruits and vegetables, 7,890 deaths, 95% UI: 5,970-9,810). Overweight-obesity and physical inactivity accounted for 7,620 deaths (95% UI: 6,040-9,190), and 7,400 deaths (95% UI: 6,670-8,130), respectively. The cardiometabolic risk factors of high blood pressure, high blood glucose, high cholesterol, and overweight-obesity jointly accounted for 12,120 deaths (95% UI: 11,220-13,020) from cardiovascular diseases. For domestic risk factors, infections from hepatitis B virus (HBV) and hepatitis C virus (HCV) were responsible for 6,300 deaths (95% UI: 5,610-6,980) and 3,170 deaths (95% UI: 1,860-4,490), respectively, and betel nut use was associated with 1,780 deaths from oral, laryngeal, and esophageal cancer (95% UI: 1,190-2,360). The leading risk factors for years of life lost were similar, but the impact of tobacco smoking and alcohol use became larger because the attributable deaths from these risk factors occurred among young adults aged less than 60 years. Conclusions: High blood glucose, tobacco smoking, and high blood pressure are the major risk factors for deaths from diseases and injuries among Taiwanese adults. A large number of years of life would be gained if the 13 modifiable risk factors could be removed or reduced to the optimal level
Universal Spin Transport in a Strongly Interacting Fermi Gas
Transport of fermions is central in many elds of physics. Electron transport runs modern technology,
de ning states of matter such as superconductors and insulators, and electron spin, rather
than charge, is being explored as a new carrier of information [1]. Neutrino transport energizes
supernova explosions following the collapse of a dying star [2], and hydrodynamic transport of the
quark-gluon plasma governed the expansion of the early Universe [3]. However, our understanding
of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold
gases of fermionic atoms realize a pristine model for such systems and can be studied in real time
with the precision of atomic physics [4, 5]. It has been established that even above the super
uid
transition such gases
ow as an almost perfect
uid with very low viscosity [3, 6] when interactions
are tuned to a scattering resonance. However, here we show that spin currents, as opposed to
mass currents, are maximally damped, and that interactions can be strong enough to reverse spin
currents, with opposite spin components reflecting off each other. We determine the spin drag coefficient, the spin di usivity, and the spin susceptibility, as a function of temperature on resonance and
show that they obey universal laws at high temperatures. At low temperatures, the spin di usivity
approaches a minimum value set by ħ/m, the quantum limit of di usion, where ħ is the reduced
Planck's constant and m the atomic mass. For repulsive interactions, our measurements appear to
exclude a metastable ferromagnetic state [7{9].National Science Foundation (U.S.)United States. Office of Naval ResearchUnited States. Army Research Office (DARPA OLE programme)Alfred P. Sloan FoundationUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research InitiativeUnited States. Army Research Office. Multidisciplinary University Research InitiativeUnited States. Defense Advanced Research Projects Agency. Young Faculty AwardDavid & Lucile Packard Foundatio
Choosing a medical specialty: the difference between what students want and what society needs
The choice of a specialty by medical students is a complex one that has significant implications for the future supply of physician manpower. The study by Weissman et al. portrays this choice as reflecting the degree of congruence between a student’s needs and values and his or her perception of the characteristics of the various specialties. The existing shortages in the supply of various specialists in Israel may be interpreted as signifying a lack of alignment of student needs and perceptions. This commentary will extend the implications of this work to include the connection between students’ choices and the physician manpower needs of society, and will focus on primary care physician shortages in the United States as but one example of the implications of these relationships
Survey radiography and computerized tomography imaging of the thorax in female dogs with mammary tumors
<p>Abstract</p> <p>Background</p> <p>Accurate early diagnosis of lung metastases is important for establishing therapeutic measures. Therefore, the present study aimed to compare survey thoracic radiographs and computerized tomography (CT) scans to specifically identify lung metastases in female dogs with mammary tumors.</p> <p>Methods</p> <p>Twenty-one female dogs, weighing 3 to 34 kg and aged from 5 years to 14 years and 10 months, with mammary tumors were studied. In all dogs before the imaging examinations, fine-needle aspiration cytology of the mammary tumors was performed to confirm the diagnosis. Three-view thoracic radiographs were accomplished: right lateral, left lateral and ventrodorsal views. Sequential transverse images of the thorax were acquired on a spiral Scanner, before and after intravenous bolus injection of nonionic iodine contrast. Soft-tissue and lung windows were applied. All the mammary tumors were surgically removed and examined histologically.</p> <p>Results</p> <p>The correlation between the cytological and histological results regarding presence of malignancy was observed in only 17 cases. In radiographic examinations, no dog displayed signs of lung metastases or thorax chest lesions. CT detected lung metastasis in two cases, while small areas of lung atelectasis located peripherally were found in 28.57% of the dogs.</p> <p>Conclusion</p> <p>In this study population, spiral CT showed higher sensitivity than chest radiographies to detect lung metastasis; this indicates that CT should be performed on all female dogs with malignant mammary tumors.</p
Polymerase II Promoter Strength Determines Efficacy of microRNA Adapted shRNAs
Since the discovery of RNAi and microRNAs more than 10 years ago, much research has focused on the development of systems that usurp microRNA pathways to downregulate gene expression in mammalian cells. One of these systems makes use of endogenous microRNA pri-cursors that are expressed from polymerase II promoters where the mature microRNA sequence is replaced by gene specific duplexes that guide RNAi (shRNA-miRs). Although shRNA-miRs are effective in directing target mRNA knockdown and hence reducing protein expression in many cell types, variability of RNAi efficacy in cell lines has been an issue. Here we show that the choice of the polymerase II promoter used to drive shRNA expression is of critical importance to allow effective mRNA target knockdown. We tested the abundance of shRNA-miRs expressed from five different polymerase II promoters in 6 human cell lines and measured their ability to drive target knockdown. We observed a clear positive correlation between promoter strength, siRNA expression levels, and protein target knockdown. Differences in RNAi from the shRNA-miRs expressed from the various promoters were particularly pronounced in immune cells. Our findings have direct implications for the design of shRNA-directed RNAi experiments and the preferred RNAi system to use for each cell type
Functional Expression of Human Adenine Nucleotide Translocase 4 in Saccharomyces Cerevisiae
The adenine nucleotide translocase (ANT) mediates the exchange of ADP and ATP across the inner mitochondrial membrane. The human genome encodes multiple ANT isoforms that are expressed in a tissue-specific manner. Recently a novel germ cell-specific member of the ANT family, ANT4 (SLC25A31) was identified. Although it is known that targeted depletion of ANT4 in mice resulted in male infertility, the functional biochemical differences between ANT4 and other somatic ANT isoforms remain undetermined. To gain insight into ANT4, we expressed human ANT4 (hANT4) in yeast mitochondria. Unlike the somatic ANT proteins, expression of hANT4 failed to complement an AAC-deficient yeast strain for growth on media requiring mitochondrial respiration. Moreover, overexpression of hANT4 from a multi-copy plasmid interfered with optimal yeast growth. However, mutation of specific amino acids of hANT4 improved yeast mitochondrial expression and supported growth of the AAC-deficient yeast on non-fermentable carbon sources. The mutations affected amino acids predicted to interact with phospholipids, suggesting the importance of lipid interactions for function of this protein. Each mutant hANT4 and the somatic hANTs exhibited similar ADP/ATP exchange kinetics. These data define common and distinct biochemical characteristics of ANT4 in comparison to ANT1, 2 and 3 providing a basis for study of its unique adaptation to germ cells
- …