2,485 research outputs found

    Emergent quantum confinement at topological insulator surfaces

    Full text link
    Bismuth-chalchogenides are model examples of three-dimensional topological insulators. Their ideal bulk-truncated surface hosts a single spin-helical surface state, which is the simplest possible surface electronic structure allowed by their non-trivial Z2\mathbb{Z}_2 topology. They are therefore widely regarded ideal templates to realize the predicted exotic phenomena and applications of this topological surface state. However, real surfaces of such compounds, even if kept in ultra-high vacuum, rapidly develop a much more complex electronic structure whose origin and properties have proved controversial. Here, we demonstrate that a conceptually simple model, implementing a semiconductor-like band bending in a parameter-free tight-binding supercell calculation, can quantitatively explain the entire measured hierarchy of electronic states. In combination with circular dichroism in angle-resolved photoemission (ARPES) experiments, we further uncover a rich three-dimensional spin texture of this surface electronic system, resulting from the non-trivial topology of the bulk band structure. Moreover, our study reveals how the full surface-bulk connectivity in topological insulators is modified by quantum confinement.Comment: 9 pages, including supplementary information, 4+4 figures. A high resolution version is available at http://www.st-andrews.ac.uk/~pdk6/pub_files/TI_quant_conf_high_res.pd

    Holographic Duals of D=3 N=4 Superconformal Field Theories

    Get PDF
    We find the warped AdS_4 x K type-IIB supergravity solutions holographically dual to a large family of three dimensional \cN=4 superconformal field theories labeled by a pair (\rho,\hat\rho) of partitions of N. These superconformal theories arise as renormalization group fixed points of three dimensional mirror symmetric quiver gauge theories, denoted by T^{\rho}_{\hat \rho}(SU(N)) and T_{\rho}^{\hat \rho}(SU(N)) respectively. We give a supergravity derivation of the conjectured field theory constraints that must be satisfied in order for these gauge theories to flow to a non-trivial supersymmetric fixed point in the infrared. The exotic global symmetries of these superconformal field theories are precisely realized in our explicit supergravity description.Comment: 33 pages, LaTeX; added a comment mentioning that these solutions have all moduli fixed; typos corrected; references adde

    Zero Sound in Strange Metallic Holography

    Full text link
    One way to model the strange metal phase of certain materials is via a holographic description in terms of probe D-branes in a Lifshitz spacetime, characterised by a dynamical exponent z. The background geometry is dual to a strongly-interacting quantum critical theory while the probe D-branes are dual to a finite density of charge carriers that can exhibit the characteristic properties of strange metals. We compute holographically the low-frequency and low-momentum form of the charge density and current retarded Green's functions in these systems for massless charge carriers. The results reveal a quasi-particle excitation when z<2, which in analogy with Landau Fermi liquids we call zero sound. The real part of the dispersion relation depends on momentum k linearly, while the imaginary part goes as k^2/z. When z is greater than or equal to 2 the zero sound is not a well-defined quasi-particle. We also compute the frequency-dependent conductivity in arbitrary spacetime dimensions. Using that as a measure of the charge current spectral function, we find that the zero sound appears only when the spectral function consists of a single delta function at zero frequency.Comment: 20 pages, v2 minor corrections, extended discussion in sections 5 and 6, added one footnote and four references, version published in JHE

    Transport in holographic superfluids

    Full text link
    We construct a slowly varying space-time dependent holographic superfluid and compute its transport coefficients. Our solution is presented as a series expansion in inverse powers of the charge of the order parameter. We find that the shear viscosity associated with the motion of the condensate vanishes. The diffusion coefficient of the superfluid is continuous across the phase transition while its third bulk viscosity is found to diverge at the critical temperature. As was previously shown, the ratio of the shear viscosity of the normal component to the entropy density is 1/(4 pi). As a consequence of our analysis we obtain an analytic expression for the backreacted metric near the phase transition for a particular type of holographic superfluid.Comment: 45 pages + appendice

    Z-extremization and F-theorem in Chern-Simons matter theories

    Full text link
    The three dimensional exact R symmetry of N=2 SCFTs extremizes the partition function localized on a three sphere. Here we verify this statement at weak coupling. We give a detailed analysis for two classes of models. The first one is an SU(N)_k gauge theory at large k with both fundamental and adjoint matter fields, while the second is a flavored version of the ABJ theory, where the CS levels are large but they do not necessarily sum up to zero. We study in both cases superpotential deformations and compute the R charges at different fixed points. When these fixed points are connected by an RG flow we explicitly verify that the free energy decreases at the endpoints of the flow between the fixed points, corroborating the conjecture of an F-theorem in three dimensions.Comment: 28 pages, 3 figures, JHEP.cls, minor corrections, references adde

    Effective AdS/renormalized CFT

    Full text link
    For an effective AdS theory, we present a simple prescription to compute the renormalization of its dual boundary field theory. In particular, we define anomalous dimension holographically as the dependence of the wave-function renormalization factor on the radial cutoff in the Poincare patch of AdS. With this definition, the anomalous dimensions of both single- and double- trace operators are calculated. Three different dualities are considered with the field theory being CFT, CFT with a double-trace deformation and spontaneously broken CFT. For the second dual pair, we compute scaling corrections at the UV and IR fixed points of the RG flow triggered by the double-trace deformation. For the last case, we discuss whether our prescription is sensitive to the AdS interior or equivalently, the IR physics of the dual field theory.Comment: 20 pages, 3 figure

    The Large N Limit of Toric Chern-Simons Matter Theories and Their Duals

    Full text link
    We compute the large N limit of the localized three dimensional free energy of various field theories with known proposed AdS duals. We show that vector-like theories agree with the expected supergravity results, and with the conjectured F-theorem. We also check that the large N free energy is preserved by the three dimensional Seiberg duality for general classes of vector like theories. Then we analyze the behavior of the free energy of chiral-like theories by applying a new proposal. The proposal is based on the restoration of a discrete symmetry on the free energy before the extremization. We apply this procedure at strong coupling in some examples and we discuss the results. We conclude the paper by proposing an alternative geometrical expression for the free energy.Comment: 40 pages, 7 figures, using jheppub.sty, references adde

    Refined Checks and Exact Dualities in Three Dimensions

    Full text link
    We discuss and provide nontrivial evidence for a large class of dualities in three-dimensional field theories with different gauge groups. We match the full partition functions of the dual phases for any value of the couplings to underpin our proposals. We focus on two classes of models. The first class, motivated by the AdS/CFT conjecture, consists of necklace U(N) quiver gauge theories with non chiral matter fields. We also consider orientifold projections and establish dualities among necklace quivers with alternating orthogonal and symplectic groups. The second class consists of theories with tensor matter fields with free theory duals. In most of these cases the R-symmetry mixes with IR accidental symmetries and we develop the prescription to include their contribution into the partition function and the extremization problem accordingly.Comment: 38 pages, 3 figure, using jheppu

    Holomorphic variables in magnetized brane models with continuous Wilson lines

    Get PDF
    We analyze the action of the target-space modular group in toroidal type IIB orientifold compactifications with magnetized D-branes and continuous Wilson lines. The transformation of matter fields agree with that of twisted fields in heterotic compactifications, constituting a check of type I/heterotic duality. We identify the holomorphic N = 1 variables for these compactifications. Matter fields and closed string moduli are both redefined by open string moduli. The redefinition of matter fields can be read directly from the perturbative Yukawa couplings, whereas closed string moduli redefinitions are obtained from D-brane instanton superpotential couplings. The resulting expressions reproduce and generalize, in the presence of internal magnetic fields, previous results in the literature.Comment: 9 pages, no figures; v2: conventions for Wilson lines changed, major simplifications in expressions, discussions extended, typos corrected, some references adde
    • 

    corecore