2,201 research outputs found

    Cluster Galaxy Evolution from a New Sample of Galaxy Clusters at 0.3 < z < 0.9

    Full text link
    (Abridged) We analyze photometry and spectroscopy of a sample of 63 clusters at 0.3<z<0.9 drawn from the Las Campanas Distant Cluster Survey to empirically constrain models of cluster galaxy evolution. Specifically, by combining data on our clusters with those from the literature we parametrize the redshift dependence of 1) M*_I in the observed frame; 2) the V-I color of the E/S0 red sequence in the observed frames; and 3) the I-K' color of the E/S0 red sequence in the observed frame. Using the peak surface brightness of the cluster detection, S, as a proxy for cluster mass, we find no correlation between S and M* or the location of the red envelope in V-I. We suggest that these observations can be explained with a model in which luminous early type galaxies (or more precisely, the progenitors of current day luminous early type galaxies) form the bulk of their stellar populations at high redshift (>~ 5) and in which many of these galaxies, if not all, accrete mass either in the form of evolved stellar populations or gas that causes only a short term episode of star formation at lower redshifts (1.5 < z < 2). Our data are too crude to reach conclusions regarding the evolutionary state of any particular cluster or to investigate whether the morphological evolution of galaxies matches the simple scenario we discuss, but the statistical nature of this study suggests that the observed evolutionary trends are universal in massive clusters.Comment: 35 pages, accepted for publication in Ap

    Hot melt adhesive attachment pad

    Get PDF
    A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond

    GMOS Integral Field Spectroscopy of a Merging System with Enhanced Balmer Absorption

    Full text link
    In this paper we present the three dimensional dynamics of the galaxy SDSS J101345.39+011613.66, selected for its unusually strong Balmer absorption lines (Wo(H-delta)=7.5A). Using the GMOS-South IFU in Nod & Shuffle mode we have mapped the continuum and optical absorption lines of this z=0.1055 field galaxy. This galaxy has a disturbed morphology, with a halo of diffuse material distributed asymmetrically toward the north. Using the [OII] emission line (Wo([OII])=4.1A) we find that the gas and hot OB stars are offset from the older stars in the system. The gas also has a spatially extended and elongated morphology with a velocity gradient of 100+/-20km/s across 6kpc in projection. Using the strong H-gamma and H-delta absorption lines we find that the A- stars are widely distributed across the system and are not centrally concentrated arguing that the A-star population has formed in molecular clouds outside the nucleus. By cross correlating the spectra from the datacube with an A-star template we find evidence that the A-star population has a 40km/s shear in the same direction as the gas. The disturbed morphology, strong colour gradients and strong H-delta and H-gamma absorption lines in SDSS J101345.39 argue that this is a recent tidal interaction/merger between a passive elliptical and star-forming galaxy. Although based on a single object, these results show that we can spatially resolve and constrain the dynamics of this short lived (yet important) phase of galaxy formation in which the evolutionary process take galaxies from star-forming to their quiescent end products.Comment: 7 pages, 7 figures. Accepted for publication in Ap

    The spatial distribution of galaxies of different spectral types in the massive intermediate-redshift cluster MACSJ0717.5+3745

    Full text link
    We present the results of a wide-field spectroscopic analysis of the galaxy population of the massive cluster MACSJ0717.5+3745 and the surrounding filamentary structure (z=0.55), as part of our systematic study of the 12 most distant clusters in the MACS sample. Of 1368 galaxies spectroscopically observed in this field, 563 are identified as cluster members; of those, 203 are classified as emission-line galaxies, 260 as absorption-line galaxies, and 17 as E+A galaxies (defined by HÎŽ+HÎł2>6\frac{H_{\delta}+H_{\gamma}}{2}>6\AA and no detection of [OII] and HÎČH_{\beta} in emission). The variation of the fraction of emission- and absorption-line galaxies as a function of local projected galaxy density confirms the well-known morphology-density relation, and becomes flat at projected galaxy densities less than $\sim 20Mpc^{-2}. Interestingly, 16 out of 17 E+A galaxies lie (in projection) within the ram-pressure stripping radius around the cluster core, which we take to be direct evidence of ram-pressure stripping being the primary mechanism that terminates star-formation in the E+A population of galaxy clusters. This conclusion is supported by the rarity of E+A galaxies in the filament which rules out galaxy mergers as the dominant driver of evolution for E+A galaxies in clusters. In addition, we find the 42 e(a) and 27 e(b) member galaxies, i.e., the dusty-starburst and starburst galaxies respectively, to be spread out across almost the entire study area. Their spatial distribution, which shows a strong preference for the filament region, suggests that starbursts are triggered in relatively low-density environments as galaxies are accreted from the field population.Comment: 16 pages, 15 figures, accepted by Ap

    Age, Metallicity and Star Formation History of Cluster Galaxies at z~0.3 F

    Get PDF
    We investigate the color-magnitude distribution in the rich cluster AC 118 at z=0.31. The sample is selected by the photometric redshift technique, allowing to study a wide range of properties of stellar populations, and is complete in the K-band, allowing to study these properties up to a given galaxy mass. We use galaxy templates based on population synthesis models to translate the physical properties of the stellar populations - formation epoch, time-scale of star formation, and metallicity - into observed magnitudes and colors. In this way we show that a sharp luminosity-metallicity relation is inferred without any assumption on the galaxy formation scenario (either monolithic or hierarchical). Our data exclude significant differences in star formation histories along the color-magnitude relation, and therefore confirm a pure metallicity interpretation for its origin, with an early (z~5) formation epoch for the bulk of stellar populations. The dispersion in the color-magnitude diagram implies that fainter galaxies in our sample (K~18) ceased to form stars as late as z~0.5, in agreement with the picture that these galaxies were recently accreted into the cluster environment. The trend with redshift of the total stellar mass shows that half of the luminous mass in AC 118 was already formed at $z~2, but also that 20% of the stars formed at z<1.Comment: 16 pages, 10 figures. ApJ in pres

    Disentangling the Dynamical Mechanisms for Cluster Galaxy Evolution

    Full text link
    The determination of the dynamical causes of the morphological Butcher-Oemler (BO) effect, or the rapid transformation of a large population of late-type galaxies to earlier Hubble types in the rich cluster environment between intermediate redshifts and the local universe, has been an important unsolved problem which is central to our understanding of the general problems of galaxy formation and evolution. In this article, we survey the existing proposed mechanisms for cluster galaxy transformation, and discuss their relevance and limitations to the explanation of the morphological BO effect. A new infrared diagnostic approach is devised to disentangle the relative importance of several major physical mechanisms to account for the BO effect, and an example of the first application of this procedure to a single rich, intermediate redshift galaxy cluster is given to demonstrate the viability of this approach. The preliminary result of this analysis favors the interaction-enhanced secular evolution process as the major cause of the cluster-galaxy morphological transformation. This conclusion is also supported by a wide range of other published results which are assembled here to highlight their implications on a coherent physical origin for the morphological BO effect.Comment: Accepted for publication in the PAS

    The Evolution of Early-Type Galaxies in Distant Clusters

    Get PDF
    We present results from an optical-IR photometric study of early-type galaxies in 19 galaxy clusters out to z=0.9. The galaxy sample is selected on the basis of morphologies determined from HST WFPC2 images, and is photometrically defined in the K-band to minimize redshift-dependent selection biases. The optical-IR colors of the early-type cluster galaxies become bluer with increasing redshift in a manner consistent with the passive evolution of an old stellar population formed at an early cosmic epoch. The degree of color evolution is similar for clusters at similar redshift, and does not depend strongly on the optical richness or X-ray luminosity of the cluster, suggesting that the history of early-type galaxies is relatively insensitive to environment. The slope of the color-magnitude relationship shows no significant change out to z=0.9, providing evidence that it arises from a correlation between galaxy mass and metallicity, not age. Finally, the intrinsic scatter in the optical-IR colors is small and nearly constant with redshift, indicating that the majority of giant, early-type galaxies in clusters share a common star formation history, with little perturbation due to uncorrelated episodes of later star formation. Taken together, our results are consistent with models in which most early-type galaxies in rich clusters are old, formed the majority of their stars at high redshift in a well-synchronized fashion, and evolved quiescently thereafter.Comment: 55 pages, 24 figures, uses AASTeX. Accepted for publication in The Astrophysical Journa

    Principal null directions of perturbed black holes

    Full text link
    The properties of principal null directions of a perturbed black hole are investigated. It shown that principal null directions are directly observable quantities characterizing the space-time. A definition of a perturbed space-time, generalizing that given by Stewart and Walker is proposed. This more general framework allows one to include descriptions of a given space-time other than by a pair (M,g)(M,g) where MM is a four-dimensional differential manifold and gg a Lorentz metric. Examples of alternative characterizations are the curvature representation of Karlhede and others, the Newman-Penrose representation or observable quantities involving principal null directions. The conditions are studied under which the various alternative choices of observables provide equivalent descriptions of the space-time.Comment: To appear in Class. Quantum Gra
    • 

    corecore