5,078 research outputs found

    Evaluation and development of satellite inferences of convective storm intensity using combined case study analysis and thunderstorm model simulations

    Get PDF
    Major research accomplishments which were achieved during the first year of the grant are summarized. The research concentrated in the following areas: (1) an examination of observational requirements for predicting convective storm development and intensity as suggested by recent numerical experiments; (2) interpretation of recent 3D numerical experiments with regard to the relationship between overshooting tops and surface wind gusts; (3) the development of software for emulating satellite-inferred cloud properties using 3D cloud model predicted data; and (4) the development of a conceptual/semi-quantitative model of eastward propagating, mesoscale convective complexes forming to the lee of the Rocky Mountains

    Sea breeze: Induced mesoscale systems and severe weather

    Get PDF
    Sea-breeze-deep convective interactions over the Florida peninsula were investigated using a cloud/mesoscale numerical model. The objective was to gain a better understanding of sea-breeze and deep convective interactions over the Florida peninsula using a high resolution convectively explicit model and to use these results to evaluate convective parameterization schemes. A 3-D numerical investigation of Florida convection was completed. The Kuo and Fritsch-Chappell parameterization schemes are summarized and evaluated

    Studies of satellite support to weather modification in the western US region

    Get PDF
    The applications of meteorological satellite data to both summer and winter weather modification programs are addressed. Appraisals of the capability of satellites to assess seedability, to provide real-time operational support, and to assist in the post-experiment analysis of a seeding experiment led to the incorporation of satellite observing systems as a major component in the Bureau of Reclamations weather modification activities. Satellite observations are an integral part of the South Park Area cumulus experiment (SPACE) which aims to formulate a quantitative hypothesis for enhancing precipitation from orographically induced summertime mesoscale convective systems (orogenic mesoscale systems). Progress is reported in using satellite observations to assist in classifying the important mesoscale systems, and in defining their frequency and coverage, and potential area of effect. Satellite studies of severe storms are also covered

    Investigations of aerosol impacts on hurricanes: virtual seeding flights

    Get PDF
    This paper examines the feasibility of mitigating the intensity of hurricanes by enhancing the CCN concentrations in the outer rainband region. Increasing CCN concentrations would cause a reduced collision and coalescence, resulting in more supercooled liquid water to be transported aloft which then freezes and enhances convection via enhanced latent heat of freezing. The intensified convection would condense more water ultimately enhancing precipitation in the outer rainbands. Enhanced evaporative cooling from the increased precipitation in the outer rainbands would produce stronger and more widespread areal cold pools which block the flow of energy into the storm core, ultimately inhibiting the intensification of the tropical cyclone. <br></br> We designed a series of multi-grid for which the time of the "virtual flights" as well as the aerosol release rates are varied. A code that simulates the flight of a plane is used to increase the CCN concentrations as an aircraft flies. Results show a significant sensitivity to both the seeding time and the aerosol release rates and support the aforementioned hypothesis

    Some Service Failures arising from Various Types of Corrosion

    Get PDF
    The Research Laboratory of the Development and Research Department of The Mond Nickel Company Limited, has been concerned is developing new heat and corrosion-resistant alloys to meet the demands of designers of gas-turbine chemical plant and electrical equipment.Premature service failures in these materials are not common, and when they do occur they can usually be traced to misuse or mal-treatment of the material during fabrication or appli-cation, or to some form of accidental contamination or damage. Important lessons have nevertheless been learned from post-mortem examinations of service failures, and the following five examples have been selected as of interest not only to works' metallurgists but also to designers, to whom these special materials offer new possibilities, and to fabricators, to whom they present certain problems

    Radio Continuum Observations of the Galactic Center: Photoevaporative Proplyd-like Objects near Sgr A*

    Full text link
    We present radio images within 30'' of Sgr A* based on recent VLA observations at 34 GHz with 7.8 microJy sensitivity and resolution 88×46\sim88\times46 milliarcseconds (mas). We report 44 partially resolved compact sources clustered in two regions in the E arm of ionized gas that orbits Sgr A*. These sources have size scales ranging between ~50 and 200 mas (400 to 1600 AUs), and a bow-shock appearance facing the direction of Sgr A*. Unlike the bow-shock sources previously identified in the near-IR but associated with massive stars, these 34 GHz sources do not appear to have near-IR counterparts at 3.8 μ\mum. We interpret these sources as a candidate population of photoevaporative protoplanetary disks (proplyds) that are associated with newly formed low mass stars with mass loss rates ~10^{-7} - 10^{-6} solar mass per year and are located at the edge of a molecular cloud outlined by ionized gas. The disks are externally illuminated by strong Lyman continuum radiation from the ~100 OB and WR massive stars distributed within 10'' of Sgr A*. The presence of proplyds implies current in-situ star formation activity near Sgr A* and opens a window for the first time to study low mass star, planetary and brown dwarf formations near a supermassive black hole.Comment: 13 pages, 4 figures, ApJL (in press

    Representations of world coordinates in FITS

    Get PDF
    The initial descriptions of the FITS format provided a simplified method for describing the physical coordinate values of the image pixels, but deliberately did not specify any of the detailed conventions required to convey the complexities of actual image coordinates. Building on conventions in wide use within astronomy, this paper proposes general extensions to the original methods for describing the world coordinates of FITS data. In subsequent papers, we apply these general conventions to the methods by which spherical coordinates may be projected onto a two-dimensional plane and to frequency/wavelength/velocity coordinates.Comment: 15 Pages, 1 figure, LaTex with Astronomy & Astrophysics macro package, submitted to A&A, related papers at http://www.aoc.nrao.edu/~egreise

    Representations of celestial coordinates in FITS

    Full text link
    In Paper I, Greisen & Calabretta (2002) describe a generalized method for assigning physical coordinates to FITS image pixels. This paper implements this method for all spherical map projections likely to be of interest in astronomy. The new methods encompass existing informal FITS spherical coordinate conventions and translations from them are described. Detailed examples of header interpretation and construction are given.Comment: Consequent to Paper I: "Representations of world coordinates in FITS". 45 pages, 38 figures, 13 tables, aa macros v5.2 (2002/Jun). Both papers submitted to Astronomy & Astrophysics (2002/07/19). Replaced to try to get figure and table placement right (no textual changes

    First Keck Nulling Observations of a Young Stellar Object: Probing the Circumstellar Environment of the Herbig Ae star MWC 325

    Get PDF
    We present the first N-band nulling plus K- and L-band V2 observations of a young stellar object, MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 um wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.3 and 2 larger in the L-band and N-band, respectively, compared to that in the K-band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly-shadowed nearly flat-disk model, with only slight flaring in the outer regions of the disk, consisting of representative "sub-micron" (0.1 um) and "micron" (2 um) grains of a 50:50 ratio of silicate and graphite. This is marked contrast with the disks previously found in other Herbig Ae/Be stars suggesting a wide variety in the disk properties among Herbig Ae/Be stars.Comment: Accepted for publication in the Ap
    corecore