1,405 research outputs found
High-Resolution X-Ray Spectroscopy of the Accretion Disk Corona Source 4U 1822-37
We present a preliminary analysis of the X-ray spectrum of the accretion disk
corona source, 4U 1822-37, obtained with the High Energy Transmission Grating
Spectrometer onboard the Chandra X-ray Observatory. We detect discrete emission
lines from photoionized iron, silicon, magnesium, neon, and oxygen, as well as
a bright iron fluorescence line. Phase-resolved spectroscopy suggests that the
recombination emission comes from an X-ray illuminated bulge located at the
predicted point of impact between the disk and the accretion stream. The
fluorescence emission originates in an extended region on the disk that is
illuminated by light scattered from the corona.Comment: 12 pages, 6 figures; Accepted for publication in ApJ Letter
The broad-band X-ray spectrum of the dipping Low Mass X-ray Binary EXO0748--676
We present results of a 0.1-100 keV BeppoSAX observation of the dipping LMXRB
EXO 0748-676 performed in 2000 November. During the observation the source
exhibited X-ray eclipses, type I X-ray bursts and dipping activity over a wide
range of orbital phases. The 0.1-100keV "dip-free"(ie. dipping and eclipsing
intervals excluded) spectrum is complex,especially at low-energies where a soft
excess is present. Two very different spectral models give satisfactory fits.
The first is the progressive covering model, consisting of separately absorbed
black body and cut-off power-law components.The second model is an absorbed
cut-off power-law together with a moderately ionized absorber with a sub-solar
abundance of Fe and a 2.13 keV absorption feature (tentatively identified with
Si xiii). This ionized absorber may be the same feature as seen by Chandra
during dips from EXO 0748-676.Comment: 7 pages, 5 figures, paper accepted for publication in Astronomy and
Astrophysic
Discovery of X-ray absorption features from the dipping low-mass X-ray binary XB 1916-053 with XMM-Newton
We report the discovery of narrow Fe XXV and Fe XXVI K alpha X-ray absorption
lines at 6.65 and 6.95 keV in the persistent emission of the dipping low-mass
X-ray binary (LMXB) XB 1916-053 during an XMM-Newton observation performed in
September 2002. In addition, there is marginal evidence for absorption features
at 1.48 keV, 2.67 kev, 7.82 keV and 8.29 keV consistent with Mg XII, S XVI, Ni
XXVII K alpha and Fe XXVI K beta transitions, respectively. Such absorption
lines from highly ionized ions are now observed in a number of high inclination
(ie. close to edge-on) LMXBs, such as XB 1916-053, where the inclination is
estimated to be between 60-80 degrees. This, together with the lack of any
orbital phase dependence of the features (except during dips), suggests that
the highly ionized plasma responsible for the absorption lines is located in a
cylindrical geometry around the compact object. Using the ratio of Fe XXV and
Fe XXVI column densities, we estimate the photo-ionization parameter of the
absorbing material to be 10^{3.92} erg cm s^{-1}. Only the Fe XXV line is
observed during dipping intervals and the upper-limits to the Fe XXVI column
density are consistent with a decrease in the amount of ionization during
dipping intervals. This implies the presence of cooler material in the line of
sight during dipping. We also report the discovery of a 0.98 keV absorption
edge in the persistent emission spectrum. The edge energy decreases to 0.87 keV
during deep dipping intervals. The detected feature may result from edges of
moderately ionized Ne and/or Fe with the average ionization level decreasing
from persistent emission to deep dipping. This is again consistent with the
presence of cooler material in the line of sight during dipping.Comment: 13 pages, accepted for publication in Astronomy and Astrophysic
High Resolution Spectroscopy of the X-ray Photoionized Wind in Cygnus X-3 with the Chandra High Energy Transmission Grating Spectrometer
We present a preliminary analysis of the 1--10 keV spectrum of the massive
X-ray binary Cyg X-3, obtained with the High Energy Transmission Grating
Spectrometer on the Chandra X-ray Observatory. The source reveals a richly
detailed discrete emission spectrum, with clear signatures of
photoionization-driven excitation.
Among the spectroscopic novelties in the data are the first astrophysical
detections of a number of He-like 'triplets' (Si, S, Ar) with emission line
ratios characteristic of photoionization equilibrium, fully resolved narrow
radiative recombination continua of Mg, Si, and S, the presence of the H-like
Fe Balmer series, and a clear detection of a ~ 800 km/s large scale velocity
field, as well as a ~1500 km/s FWHM Doppler broadening in the source. We
briefly touch on the implications of these findings for the structure of the
Wolf-Rayet wind.Comment: 11 pages, 3 figures; Accepted for publication in ApJ Letter
Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film
Employing Brillouin spectroscopy, strong interfacial Dzyaloshinskii-Moriya
interactions have been observed in an ultrathin Pt/CoFeB film. Our
micromagnetic simulations show that spin-wave nonreciprocity due to asymmetric
surface pinning is insignificant for the 0.8nmthick CoFeB film studied. The
observed high asymmetry of the monotonic spin wave dispersion relation is thus
ascribed to strong Dzyaloshinskii-Moriya interactions present at the Pt/CoFeB
interface. Our findings should further enhance the significance of CoFeB as an
important material for magnonic, spintronic and skyrmionic applications.Comment: 12 pages, 4 figure
Localized magnetoplasmon modes arising from broken translational symmetry in semiconductor superlattices
The electromagnetic propagator associated with the localized collective
magnetoplasmon excitations in a semiconductor superlattice with broken
translational symmetry, is calculated analytically within linear response
theory. We discuss the properties of these collective excitations in both
radiative and non-radiative regimes of the electromagnetic spectra. We find
that low frequency retarded modes arise when the surface density of carriers at
the symmetry breaking layer is lower than the density at the remaining layers.
Otherwise a doublet of localized, high-frequency magnetoplasmon-like modes
occurs.Comment: Revtex file + separate pdf figure
Temperature Dependent Empirical Pseudopotential Theory For Self-Assembled Quantum Dots
We develop a temperature dependent empirical pseudopotential theory to study
the electronic and optical properties of self-assembled quantum dots (QDs) at
finite temperature. The theory takes the effects of both lattice expansion and
lattice vibration into account. We apply the theory to the InAs/GaAs QDs. For
the unstrained InAs/GaAs heterostructure, the conduction band offset increases
whereas the valence band offset decreases with increasing of the temperature,
and there is a type-I to type-II transition at approximately 135 K. Yet, for
InAs/GaAs QDs, the holes are still localized in the QDs even at room
temperature, because the large lattice mismatch between InAs and GaAs greatly
enhances the valence band offset. The single particle energy levels in the QDs
show strong temperature dependence due to the change of confinement potentials.
Because of the changes of the band offsets, the electron wave functions
confined in QDs increase by about 1 - 5%, whereas the hole wave functions
decrease by about 30 - 40% when the temperature increases from 0 to 300 K. The
calculated recombination energies of exciton, biexciton and charged excitons
show red shifts with increasing of the temperature, which are in excellent
agreement with available experimental data
Raman scattering from phonons and magnons in RFe3)BO3)4
Inelastic light scattering spectra of several members of the RFe3(BO3)4
family reveal a cascade of phase transitions as a function of temperature,
starting with a structural, weakly first order, phase transition followed by
two magnetic phase transitions. Those consist of the ordering of the Fe-spin
sublattice revealed by all the compound, and a subsequent spin-reorientational
transition for GdFe3(BO3)4. The Raman data evidence a strong coupling between
the lattice and magnetic degrees of freedom in these borates. The Fe-sublattice
ordering leads to a strong suppression of the low energy magnetic scattering,
and a multiple peaked two-magnon scattering continuum is observed. Evidence for
short-range correlations is found in the `paramagnetic' phase by the
observation of a broad magnetic continuum in the Raman data, which persists up
to surprisingly high temperatures.Comment: 17 pages, 13 figure
- …
