1,154 research outputs found

    The broad-band X-ray spectrum of the dipping Low Mass X-ray Binary EXO0748--676

    Full text link
    We present results of a 0.1-100 keV BeppoSAX observation of the dipping LMXRB EXO 0748-676 performed in 2000 November. During the observation the source exhibited X-ray eclipses, type I X-ray bursts and dipping activity over a wide range of orbital phases. The 0.1-100keV "dip-free"(ie. dipping and eclipsing intervals excluded) spectrum is complex,especially at low-energies where a soft excess is present. Two very different spectral models give satisfactory fits. The first is the progressive covering model, consisting of separately absorbed black body and cut-off power-law components.The second model is an absorbed cut-off power-law together with a moderately ionized absorber with a sub-solar abundance of Fe and a 2.13 keV absorption feature (tentatively identified with Si xiii). This ionized absorber may be the same feature as seen by Chandra during dips from EXO 0748-676.Comment: 7 pages, 5 figures, paper accepted for publication in Astronomy and Astrophysic

    New and extended ranges for Utah Plants

    Get PDF
    journal articleThe following Utah plan ts are not included in Tidestrom's " Flora of Utah and Nevada," nor are any listed specifically for Utah in Rvdberg's " Flora of the Rocky Mountains and A djacent Plains." Specific localities are given for each species, followed by the herbaria where it may be found. The University of Utah Herbarium is designated by the letter "U " , the A. O. Garrett Herbarium by the letter "G " , and the Brigham Young University Herb arium by the letter "Y ." This list does not include a rather large number of species known to occur in Utah and listed in Tidestrom , but not specifically for Utah

    High-Resolution X-Ray Spectroscopy of the Accretion Disk Corona Source 4U 1822-37

    Full text link
    We present a preliminary analysis of the X-ray spectrum of the accretion disk corona source, 4U 1822-37, obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. We detect discrete emission lines from photoionized iron, silicon, magnesium, neon, and oxygen, as well as a bright iron fluorescence line. Phase-resolved spectroscopy suggests that the recombination emission comes from an X-ray illuminated bulge located at the predicted point of impact between the disk and the accretion stream. The fluorescence emission originates in an extended region on the disk that is illuminated by light scattered from the corona.Comment: 12 pages, 6 figures; Accepted for publication in ApJ Letter

    Discovery of X-ray absorption features from the dipping low-mass X-ray binary XB 1916-053 with XMM-Newton

    Full text link
    We report the discovery of narrow Fe XXV and Fe XXVI K alpha X-ray absorption lines at 6.65 and 6.95 keV in the persistent emission of the dipping low-mass X-ray binary (LMXB) XB 1916-053 during an XMM-Newton observation performed in September 2002. In addition, there is marginal evidence for absorption features at 1.48 keV, 2.67 kev, 7.82 keV and 8.29 keV consistent with Mg XII, S XVI, Ni XXVII K alpha and Fe XXVI K beta transitions, respectively. Such absorption lines from highly ionized ions are now observed in a number of high inclination (ie. close to edge-on) LMXBs, such as XB 1916-053, where the inclination is estimated to be between 60-80 degrees. This, together with the lack of any orbital phase dependence of the features (except during dips), suggests that the highly ionized plasma responsible for the absorption lines is located in a cylindrical geometry around the compact object. Using the ratio of Fe XXV and Fe XXVI column densities, we estimate the photo-ionization parameter of the absorbing material to be 10^{3.92} erg cm s^{-1}. Only the Fe XXV line is observed during dipping intervals and the upper-limits to the Fe XXVI column density are consistent with a decrease in the amount of ionization during dipping intervals. This implies the presence of cooler material in the line of sight during dipping. We also report the discovery of a 0.98 keV absorption edge in the persistent emission spectrum. The edge energy decreases to 0.87 keV during deep dipping intervals. The detected feature may result from edges of moderately ionized Ne and/or Fe with the average ionization level decreasing from persistent emission to deep dipping. This is again consistent with the presence of cooler material in the line of sight during dipping.Comment: 13 pages, accepted for publication in Astronomy and Astrophysic

    Nonlinear Spin Dynamics in Ferromagnets with Electron-Nuclear Coupling

    Full text link
    Nonlinear spin motion in ferromagnets is considered with nonlinearity due to three factors: (i) the sample is prepared in a strongly nonequilibrium state, so that evolution equations cannot be linearized as would be admissible for spin motion not too far from equilibrium, (ii) the system considered consists of interacting electron and nuclear spins coupled with each other via hyperfine forces, and (iii) the sample is inserted into a coil of a resonant electric circuit producing a resonator feedback field. Due to these nonlinearities, coherent motion of spins can develop, resulting in their ultrafast relaxation. A complete analysis of mechanisms triggering such a coherent motion is presented. This type of ultrafast coherent relaxation can be used for studying intrinsic properties of magnetic materials.Comment: 1 file, LaTex, 23 page

    High Resolution Spectroscopy of the X-ray Photoionized Wind in Cygnus X-3 with the Chandra High Energy Transmission Grating Spectrometer

    Full text link
    We present a preliminary analysis of the 1--10 keV spectrum of the massive X-ray binary Cyg X-3, obtained with the High Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory. The source reveals a richly detailed discrete emission spectrum, with clear signatures of photoionization-driven excitation. Among the spectroscopic novelties in the data are the first astrophysical detections of a number of He-like 'triplets' (Si, S, Ar) with emission line ratios characteristic of photoionization equilibrium, fully resolved narrow radiative recombination continua of Mg, Si, and S, the presence of the H-like Fe Balmer series, and a clear detection of a ~ 800 km/s large scale velocity field, as well as a ~1500 km/s FWHM Doppler broadening in the source. We briefly touch on the implications of these findings for the structure of the Wolf-Rayet wind.Comment: 11 pages, 3 figures; Accepted for publication in ApJ Letter

    Implications of X-Ray Line Variations for 4U1822-371

    Get PDF
    4U 1822-371 is one of the proto-type accretion disk coronal sources with an orbital period of about 5.6 hours. The binary is viewed almost edge-on at a high inclination angle of 83 degrees, which makes it a unique candidate to study binary orbital and accretion disk dynamics in high powered X-ray sources. We observed the X-ray source in 4U 1822-371 with the Chandra High Energy Transmission Grating Spectrometer (HETGS) for almost nine binary orbits. X-ray eclipse times provide an update of the orbital ephemeris. We find that our result follows the quadratic function implied by previous observations; however, it suggests a flatter trend. Detailed line dynamics also confirm a previous suggestion that the observed photo-ionized line emission originates from a confined region in the outer edge of the accretion disk near the hot spot. Line properties allow us to impose limits on the size of accretion disk, the central corona, and the emission region. The photo-ionized plasma is consistent with ionization parameters of log(xi) > 2, and when combined with disk size and reasonable assumptions for the plasma density, this suggests illuminating disk luminosities which are over an order of magnitude higher than what is actually observed. That is, we do not directly observe the central emitting X-ray source. The spectral continua are best fit by a flat power law with a high energy cut-off and partial covering absorption (N_H ranging from 5.4-6.3x10^{22} cm^{-2}) with a covering fraction of about 50%. We discuss some implications of our findings with respect to the photo-ionized line emission for the basic properties of the X-ray source.Comment: Submitted to the Astrophysical Journa

    Reprogrammable magnonic band structure of layered Permalloy/Cu/Permalloy nanowires

    Full text link
    Reprogrammability of magnonic band structure in layered Permalloy/Cu/Permalloy nanowires is demonstrated to depend on the relative orientation of the two layers magnetization. By using Brillouin light spectroscopy, we show that when the layers are aligned parallel two dispersive modes, with positive and negative group velocity, are observed while when the magnetic layers are aligned anti-parallel, only one dispersive mode, with positive group velocity, is detected. Our findings are successfully compared and interpreted in terms of a microscopic (Hamiltonian-based) method. An explanation for the observed behavior can be attributed to mode-mixing (or hybridization) effect when the two magnetic layers are aligned anti-parallel. This work opens the path to magnetic field-controlled reconfigurable magnonic crystals with multi-modal frequency transmission characteristics

    Asymmetric spin-wave dispersion due to Dzyaloshinskii-Moriya interaction in an ultrathin Pt/CoFeB film

    Full text link
    Employing Brillouin spectroscopy, strong interfacial Dzyaloshinskii-Moriya interactions have been observed in an ultrathin Pt/CoFeB film. Our micromagnetic simulations show that spin-wave nonreciprocity due to asymmetric surface pinning is insignificant for the 0.8nmthick CoFeB film studied. The observed high asymmetry of the monotonic spin wave dispersion relation is thus ascribed to strong Dzyaloshinskii-Moriya interactions present at the Pt/CoFeB interface. Our findings should further enhance the significance of CoFeB as an important material for magnonic, spintronic and skyrmionic applications.Comment: 12 pages, 4 figure
    corecore