113 research outputs found

    Do Animals Play a Role in the Transmission of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)? A Commentary

    Get PDF
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the Beta-coronavirus genus. It is 96.2% homologous to bat CoV RaTG13 and 88% homologous to two bat SARS-like coronaviruses. SARS-CoV-2 is the infectious agent responsible for the coronavirus disease (COVID-19), which was first reported in the Hubei province of Wuhan, China, at the beginning of December 2019. Human transmission from COVID-19 patients or incubation carriers occurs via coughing, sneezing, speaking, discharge from the nose, or fecal contamination. Various strains of the virus have been reported around the world, with different virulence and behavior. In addition, SARS-CoV-2 shares certain epitopes with some taxonomically related viruses, with tropism for the most common synanthropic animals. By elucidating the immunological properties of the circulating SARS-CoV-2, a partial protection due to human–animal interactions could be supposed in some situations. In addition, differential epitopes could be used for the differential diagnosis of SARS-CoV-2 infection. There have been cases of transmission from people with COVID-19 to pets such as cats and dogs. In addition, wild felines were infected. All These animals were either asymptomatic or mildly symptomatic and recovered spontaneously. Experimental studies showed cats and ferrets to be more susceptible to COVID-19. COVID-19 positive dogs and felines do not transmit the infection to humans. In contrast, minks at farms were severely infected from people with COVID-19. A SARS-Cov-2 variant in the Danish farmed mink that had been previously infected by COVID-19 positive workers, spread to mink workers causing the first case of animal-to-human infection transmission that causes a moderate decreased sensitivity to neutralizing antibodies. Thus, more investigations are necessary. It remains important to understand the risk that people with COVID-19 pose to their pets, as well as wild or farm animals so effective recommendations and risk management measures against COVID-19 can be made. A One Health unit that facilitates collaboration between public health and veterinary services is recommended

    Localization of orexin B and receptor 2 for orexins in testicular cytotypes of the camelid alpaca (Vicugna pacos).

    Get PDF
    The orexins A (OxA) and B (OxB) are two hypothalamic peptides involved in many physiological functions of the mammalian body. They act through the binding of two G-coupled receptors named receptor 1 (OX1 ) and receptor 2 (OX2 ) for orexins. The first receptor is specific for OxA, while the second binds both the substances with equal affinity. The orexins and the relative receptors have been traced by means of different techniques also at the periphery of the body and particularly in the adrenals, and in gastrointestinal and genital organs. Aim of this work was to investigate the presence of OxB and OX2 by means of immunohistochemistry and Western blotting analysis in the testis of the South American camelid alpaca, a species primarily breed in Chile and Ecuador and recently diffused in Europe where the quality of its wool is particularly appreciated. OxB immunoreactivity (IR) was found in the tubular compartment of the testis where spermatogonia (resting), zygotene and pachytene spermatocytes, and spermatids clearly showed differently sized and shaped cytoplasmic positive structures. OX2 -IR was found both in the interstitial and tubular compartments of the testis and particularly in Leydig cells and round and elongated spermatids. Western blotting analysis of testis lysates showed the presence of a protein band whose molecular weight corresponded to that currently assigned to OX2 . Such findings easily translate the hypothesis that OxB and its receptor 2 play a functional role both in the interstitial and tubular compartments of the alpaca testis

    Does Orexin B-Binding Receptor 2 for Orexins Regulate Testicular and Epididymal Functions in Normal and Cryptorchid Dogs?

    Get PDF
    Orexins A (OXA) and B (OXB) and the receptors 1 (OX1R) and 2 (OX2R) for orexins are hypothalamic peptides found in several mammalian organs and participated to the control of a wide assortment of physiological and pathological functions. The distribution of OXA and OX1R has been extensively studied in the male gonad of mammals. Here, we examined the expression and localization of OXB and OX2R as well as their possible involvement in the regulation of testicular and epididymal functions, in healthy and cryptorchid dogs, employing some techniques such as immunohistochemistry, Western blotting, and real-time RT-PCR. In vitro tests were also carried out for evaluating the steroidogenic effect of OXB. OXB and OX2R were expressed in spermatocytes, spermatids, and Leydig cells in normal testis. Their localization was restricted to Sertoli and Leydig cells in cryptorchid conditions. OXB was found to be localized in all tracts of both normal and cryptorchid epididymis, whereas OX2R was found only in the caput. Because the small molecular weight of the peptides OXA and OXB, the expression of their precursor prepro-orexin (PPO), OX1R, and OX2R proteins and mRNAs were investigated by means of Western blot and real-time RT-PCR analyses, respectively, in all tested groups of. In particular, the mRNA level expression of all three genes was higher in cryptorchid dogs than in normal ones. In vitro tests demonstrated that OXB—by binding OX2R—is not involved in testicular steroidogenic processes. Therefore, the findings of this study might be the basis for further functional and molecular studies addressing the possible biochemical effects of OXB and OX2R in normal and pathological conditions of the male reproductive system

    Expression of orexin B and its receptor 2 in rat testis

    Get PDF
    The peptides orexin A (OxA) and orexin B (OxB) deriving from a common precursor molecule, prepro-orexin, by proteolytic cleavage, bind the two G-coupled OX1 and OX2 receptors. While OX1 selectively binds OxA, OX2 shows similar affinity for both orexins. Firstly discovered in the hypothalamus, orexins and their receptors have been found in other brain regions as well as in peripheral tissues of mammals, thus resulting involved in the regulation of a broad variety of physiological functions. While the functional localization of OxA and OX1 in the mammalian genital tract has been already described, the expression of OxB and OX2 and their potential role in the reproductive functions remain to be explored. Here, we investigated the presence of OxB and OX2 in the rat testis by immunohistochemical and biochemical analyses. The results definitely demonstrated the localization of OxB and OX2 in pachytene and second spermatocytes as well as in spermatids at all stages of the cycle of the seminiferous epithelium. The expression of both OX2 mRNA and protein in the rat testis was also established by RT-PCR and Western blotting, respectively. The analysis of the molecular mechanism of action of OxB in the rat testis showed that OxB, in contrast with OxA, is unable to promote steroidogenesis. These results translate into the regulation of diverse biological actions by OxA and OxB in the male gonad

    Localization of orexin B and orexin-2 receptor in the rat epididymis

    Get PDF
    The peptides orexin A (OXA) and orexin B (OXB) derived from the proteolytic cleavage of a common precursor molecule, prepro-orexin, were originally described in the rat hypothalamus. Successively, they have been found in many other brain regions as well as in peripheral organs of mammals and other less evolved animals. The widespread localization of orexins accounts for the multiple activities that they exert in the body, including the regulation of energy homeostasis, feeding, metabolism, sleep and arousal, stress, addiction, and cardiovascular and endocrine functions. Both OXA and OXB peptides bind to two G-coupled receptors, orexin-1 (OX1R) and orexin-2 (OX2R) receptor, though with different binding affinity. Altered expression/activity of orexins and their receptors has been associated with a large number of human diseases. Though at present evidence highlighted a role for orexins and cognate receptors in mammalian reproduction, their central and/or local effects on gonadal functions remain poorly known. Here, we investigated the localization of OXB and OX2R in the rat epididymis. Immunohistochemical staining of sections from caput, corpus and cauda segments of the organ showed intense signals for both OXB and OX2R in the principal cells of the lining epithelium, while no staining was detected in the other cell types. Negative results were obtained from immunohistochemical analysis of hypothalamic and testicular tissues from OX2R knock-out mice (OX2R−/−) and OX1R/OX2R double knock-out (OX1R−/−; OX2R−/−) mice, thus demonstrating the specificity of the rabbit polyclonal anti-OX2R antibody used in our study. On contrary, the same antibody clearly showed the presence of OX2R in sections from hypothalamus and testis of normal mice and rats which are well known to express the receptor. Thus, our results provide the first definite evidence for the immunohistochemical localization of OXB and OX2R in the principal cells of rat epididymis

    Expression and potential role of the peptide orexin-A in prostate cancer

    Get PDF
    The peptides orexin-A and orexin-B and their G protein-coupled OX1 and OX2 receptors are involved in multiple physiological processes in the central nervous system and peripheral organs. Altered expression or signaling dysregulation of orexins and their receptors have been associated with a wide range of human diseases including narcolepsy, obesity, drug addiction, and cancer. Although orexin-A, its precursor molecule prepro-orexin and OX1 receptor have been detected in the human normal and hyperplastic prostate tissues, their expression and function in the prostate cancer (PCa) remains to be addressed. Here, we demonstrate for the first time the immunohistochemical localization of orexin-A in human PCa specimens, and the expression of prepro-orexin and OX1 receptor at both protein and mRNA levels in these tissues. Orexin-A administration to the human androgen-dependent prostate carcinoma cells LNCaP up-regulates OX1 receptor expression resulting in a decrease of cell survival. Noteworthy, nanomolar concentrations of the peptide counteract the testosterone-induced nuclear translocation of the androgen receptor in the cells: the orexin-A action is prevented by the addition of the OX1 receptor antagonist SB-408124 to the test system. These findings indicate that orexin-A/OX1 receptor interaction interferes with the activity of the androgen receptor which regulates PCa onset and progression, thus suggesting that orexin-A and its receptor might represent novel therapeutic targets to challenge this aggressive cancer

    Topiramate-associated acute glaucoma in a migraine patient receiving concomitant citalopram therapy: a case-report

    Get PDF
    We describe the case of a 34 year-old man with diagnosis of migraine with and without aura that developed myopia and acute glaucoma after 7 days of treatment with topiramate. The patient had also been taking citalopram daily for two months. Both topiramate and citalopram have been related to the increase of intraocular pressure and the development of glaucoma. We can't exclude that in this patient citalopram caused an increase of the ocular pressure in dose-dependent manner, facilitating topiramate-induced glaucoma. We recommend to pay particular attention in prescribing of topiramate in migraine patients who are already under treatment with citalopram or other antidepressants with a similar mechanisms of action

    Efavirenz versus boosted atazanavir-containing regimens and immunologic, virologic, and clinical outcomes: A prospective study of HIV-positive individuals

    Get PDF
    Abstract Objective: To compare regimens consisting of either ritonavir-boosted atazanavir or efavirenz and a nucleoside reverse transcriptase inhibitor (NRTI) backbone with respect to clinical, immunologic, and virologic outcomes. Design: Prospective studies of human immunodeficiency virus (HIV)-infected individuals in Europe and the United States included in the HIV-CAUSAL Collaboration. Methods: HIV-positive, antiretroviral therapy-naive, and acquired immune deficiency syndrome (AIDS)-free individuals were followed from the time they started an atazanavir or efavirenz regimen. We estimated an analog of the “intention-to-treat” effect for efavirenz versus atazanavir regimens on clinical, immunologic, and virologic outcomes with adjustment via inverse probability weighting for time-varying covariates. Results: A total of 4301 individuals started an atazanavir regimen (83 deaths, 157 AIDS-defining illnesses or deaths) and 18,786 individuals started an efavirenz regimen (389 deaths, 825 AIDS-defining illnesses or deaths). During a median follow-up of 31 months, the hazard ratios (95% confidence intervals) were 0.98 (0.77, 1.24) for death and 1.09 (0.91, 1.30) for AIDS-defining illness or death comparing efavirenz with atazanavir regimens. The 5-year survival difference was 0.1% (95% confidence interval: −0.7%, 0.8%) and the AIDS-free survival difference was −0.3% (−1.2%, 0.6%). After 12 months, the mean change in CD4 cell count was 20.8 (95% confidence interval: 13.9, 27.8) cells/mm3 lower and the risk of virologic failure was 20% (14%, 26%) lower in the efavirenz regimens. Conclusion: Our estimates are consistent with a smaller 12-month increase in CD4 cell count, and a smaller risk of virologic failure at 12 months for efavirenz compared with atazanavir regimens. No overall differences could be detected with respect to 5-year survival or AIDS-free survival
    corecore