57,713 research outputs found

    Entanglement of Two Impurities through Electron Scattering

    Get PDF
    We study how two magnetic impurities embedded in a solid can be entangled by an injected electron scattering between them and by subsequent measurement of the electron's state. We start by investigating an ideal case where only the electronic spin interacts successively through the same unitary operation with the spins of the two impurities. In this case, high (but not maximal) entanglement can be generated with a significant success probability. We then consider a more realistic description which includes both the forward and back scattering amplitudes. In this scenario, we obtain the entanglement between the impurities as a function of the interaction strength of the electron-impurity coupling. We find that our scheme allows us to entangle the impurities maximally with a significant probability

    Using zeros of the canonical partition function map to detect signatures of a Berezinskii-Kosterlitz-Thouless transition

    Full text link
    Using the two dimensional XY−(S(O(3))XY-(S(O(3)) model as a test case, we show that analysis of the Fisher zeros of the canonical partition function can provide signatures of a transition in the Berezinskii-Kosterlitz-Thouless (BKTBKT) universality class. Studying the internal border of zeros in the complex temperature plane, we found a scenario in complete agreement with theoretical expectations which allow one to uniquely classify a phase transition as in the BKTBKT class of universality. We obtain TBKTT_{BKT} in excellent accordance with previous results. A careful analysis of the behavior of the zeros for both regions Re(T)≤TBKT\mathfrak{Re}(T) \leq T_{BKT} and Re(T)>TBKT\mathfrak{Re}(T) > T_{BKT} in the thermodynamic limit show that Im(T)\mathfrak{Im}(T) goes to zero in the former case and is finite in the last one

    Properties of Very Luminous Galaxies

    Get PDF
    Recent analysis of the SSRS2 data based on cell-counts and two-point correlation function has shown that very luminous galaxies are much more strongly clustered than fainter galaxies. In fact, the amplitude of the correlation function of very luminous galaxies (L>L∗L > L^*) asymptotically approaches that of R≥0R \ge 0 clusters. In this paper we investigate the properties of the most luminous galaxies, with blue absolute magnitude MB≤−21M_B \le -21. We find that: 1) the population mix is comparable to that in other ranges of absolute magnitudes; 2) only a small fraction are located in bona fide clusters; 3) the bright galaxy-cluster cross-correlation function is significantly higher on large scales than that measured for fainter galaxies; 4) the correlation length of galaxies brighter than \MB ∼−20.0 \sim -20.0, expressed as a function of the mean interparticle distance, appears to follow the universal dimensionless correlation function found for clusters and radio galaxies; 5) a large fraction of the bright galaxies are in interacting pairs, others show evidence for tidal distortions, while some appear to be surrounded by faint satellite galaxies. We conclude that very luminous optical galaxies differ from the normal population of galaxies both in the clustering and other respects. We speculate that this population is highly biased tracers of mass, being associated to dark halos with masses more comparable to clusters than typical loose groups.Comment: 29 pages (6 figures) + 2 tables; paper with all figures and images available at http://boas5.bo.astro.it/~cappi/papers.html; The Astronomical Journal, in pres
    • …
    corecore