We study how two magnetic impurities embedded in a solid can be entangled by
an injected electron scattering between them and by subsequent measurement of
the electron's state. We start by investigating an ideal case where only the
electronic spin interacts successively through the same unitary operation with
the spins of the two impurities. In this case, high (but not maximal)
entanglement can be generated with a significant success probability. We then
consider a more realistic description which includes both the forward and back
scattering amplitudes. In this scenario, we obtain the entanglement between the
impurities as a function of the interaction strength of the electron-impurity
coupling. We find that our scheme allows us to entangle the impurities
maximally with a significant probability