33 research outputs found
Reward and Punishment Sensitivity in Children with ADHD: Validating the Sensitivity to Punishment and Sensitivity to Reward Questionnaire for Children (SPSRQ-C)
This study validates the Sensitivity to Punishment and Sensitivity to Reward Questionnaire for children (SPSRQ-C), using a Dutch sample of 1234 children between 6–13 years old. Factor analysis determined that a 4-factor and a 5-factor solution were best fitting, explaining 41% and 50% of the variance respectively. The 4-factor model was highly similar to the original SPSRQ factors found in adults (Punishment Sensitivity, Reward Responsivity, Impulsivity/Fun-Seeking, and Drive). The 5-factor model was similar to the 4-factor model, with the exception of a subdivision of the Punishment Sensitivity factor into a factor with ‘social-fear’ items and a factor with ‘anxiety’ items. To determine external validity, scores of three groups of children with attention deficit hyperactivity disorder (ADHD) were compared on the EFA models: ADHD-only (n = 34), ADHD and autism spectrum disorder (ADHD+ASD; n = 22), ADHD and oppositional defiant disorder (ADHD+ODD; n = 22). All ADHD groups scored higher than typical controls on Reward Responsivity and on the ‘anxiety’ factor (n = 75). The ADHD-only and ADHD+ODD group scored higher than other groups on Impulsivity/Fun-Seeking and Drive, while the ADHD+ASD group scored higher on Punishment Sensitivity. The findings emphasize the value of the SPSRQ-C to quickly and reliably assess a child’s sensitivity to reinforcement, with the aim to provide individually-tailored behavioral interventions that utilize reward and reprimands
Production of IFN-β during Listeria monocytogenes Infection Is Restricted to Monocyte/Macrophage Lineage
The family of type I interferons (IFN), which consists of several IFN-α and one IFN-β, are produced not only after stimulation by viruses, but also after infection with non-viral pathogens. In the course of bacterial infections, these cytokines could be beneficial or detrimental. IFN-β is the primary member of type I IFN that initiates a cascade of IFN-α production. Here we addressed the question which cells are responsible for IFN-β expression after infection with the intracellular pathogen Listeria monocytogenes by using a genetic approach. By means of newly established reporter mice, maximum of IFN-β expression was observed at 24 hours post infection in spleen and, surprisingly, 48 hours post infection in colonized cervical and inguinal lymph nodes. Colonization of lymph nodes was independent of the type I IFN signaling, as well as bacterial dose and strain. Using cell specific reporter function and conditional deletions we could define cells expressing LysM as the major IFN-β producers, with cells formerly defined as Tip-DCs being the highest. Neutrophilic granulocytes, dendritic cells and plasmacytoid dendritic cells did not significantly contribute to type I IFN production
Recommended from our members