29 research outputs found

    Differential responses of zooplankton assemblages to environmental variation in temporary and permanent ponds

    Get PDF
    Permanent and temporary wetlands in Mediterranean shrublands represent unique repositories of biodiversity, which are increasingly threatened by human-induced habitat loss. The zooplankton of a permanent (P1) and a temporary pond (T35) in the Natural Reserve of Castelporziano, a rare residual stretch of such a shrubland in Central Italy (Latium), was investigated to: (1) expand and deepen knowledge of these endangered freshwater habitats, which represent a crucial component of Mediterranean biodiversity; (2) identify environmental controls regulating the development of zooplankton communities of each environment; and (3) highlight differences in the adaptive responses of the zooplankton community in relation to the different ecological conditions experienced by permanent and temporary habitats. Despite summer desiccation in T35, the two ponds exhibited a relative homogeneity in hydrological and physico-chemical dynamics. Zooplankton assemblages contained 41 total taxa, of which 32 were found in P1 and 28 in T35. Out of the 41 taxa identified, 22 (> 50%) were exclusively present in one of the two ponds. On a yearly basis, the community dynamics of P1 seemed to be conditioned by physical and chemical factors and by hydrological cycle characteristics, while the community of T35 responded to algal blooms, food competition and predator/prey equilibria rather than correlating to abiotic factors. The main differences amongst zooplankton assemblages were observed over short time scales and occurred both within and between seasons, highlighting the role of some structural taxa that dominated the average composition of the community throughout the year, and the importance of "quick-response" taxa in determining the short-term composition and structure variation of pond zooplankton. A year-round cyclic community succession peculiar to each pond is described

    Spatial and temporal variations of Cocconeis placentula var. euglypta (Ehrenb.) 1854 Grunow, 1884 in drift and periphyton

    No full text
    Spatial and temporal variations of Cocconeis placentula var. euglypta in drift and periphyton were studied in mountain streams of the Córdoba Province (Argentina). The sampling program was conducted in study sites located on a confluence between different order streams during an annual cycle. Samples were also taken every two hours during the daylight period in high and low water conditions. The relationship between drift and cellular reproduction was evaluated by valve length biometrics analysis. C. placentula var. euglypta drift was continuous; its density was not always dependent on periphyton density in each locality. C. placentula var. euglypta drift could be related to abiotic factors such as temperature and flow during the annual cycle. There were significant differences between periphyton and drift valve lengths. Moreover, drift can be associated with cellular reproduction because density was higher when valve lengths were shorter at different hours of the day. C. placentula var. euglypta epiphytims on Cladophora glomerata also influenced drift density and size distribution, modifying the relationship between periphyton and drift during the late spring when C. placentula var. euglypta was detached from senescent mats

    Spatial and temporal variations of Cocconeis placentula var. euglypta (Ehrenb.) 1854 Grunow, 1884 in drift and periphyton

    No full text
    Spatial and temporal variations of Cocconeis placentula var. euglypta in drift and periphyton were studied in mountain streams of the Córdoba Province (Argentina). The sampling program was conducted in study sites located on a confluence between different order streams during an annual cycle. Samples were also taken every two hours during the daylight period in high and low water conditions. The relationship between drift and cellular reproduction was evaluated by valve length biometrics analysis. C. placentula var. euglypta drift was continuous; its density was not always dependent on periphyton density in each locality. C. placentula var. euglypta drift could be related to abiotic factors such as temperature and flow during the annual cycle. There were significant differences between periphyton and drift valve lengths. Moreover, drift can be associated with cellular reproduction because density was higher when valve lengths were shorter at different hours of the day. C. placentula var. euglypta epiphytims on Cladophora glomerata also influenced drift density and size distribution, modifying the relationship between periphyton and drift during the late spring when C. placentula var. euglypta was detached from senescent mats

    A capacitance and optical method for the static and dynamic characterization of micro electro mechanical systems (MEMS) devices.

    No full text
    As the micro technology field expands, the need of simple and standardized procedures to precisely evaluate device functionality, realibility and quality of micro electro mechanical systems devices increases. In this paper the application of two empirical methods suitable for the static and the dynamic characterization of micrometersized structures is proposed. The first methodology is based on capacitance measurements and finds simple application in case of comb-finger actuated devices. The second one is based on the Doppler phenomenon combined with laser optical interferometry allowing the characterization of a wide range of structures. The methodologies are applied to a reliability test structure specifically designed at STMicroelectronics for studying the fatigue behaviour of the structural material involved in the fabrication of their commercial products. This case of study highlights how the techniques may be coupled to usual design approaches for completing and verifying the information given by theory and simulations; thus improving the entire development cycle
    corecore