7,533 research outputs found
The distribution of Pearson residuals in generalized linear models
In general, the distribution of residuals cannot be obtained explicitly. We
give an asymptotic formula for the density of Pearson residuals in continuous
generalized linear models corrected to order , where is the sample
size. We define corrected Pearson residuals for these models that, to this
order of approximation, have exactly the same distribution of the true Pearson
residuals. Applications for important generalized linear models are provided
and simulation results for a gamma model illustrate the usefulness of the
corrected Pearson residuals
New Flexible Regression Models Generated by Gamma Random Variables with Censored Data
We propose and study a new log-gamma Weibull regression model. We obtain explicit expressions for the raw and incomplete moments, quantile and generating functions and mean deviations of the log-gamma Weibull distribution. We demonstrate that the new regression model can be applied to censored data since it represents a parametric family of models which includes as sub-models several widely-known regression models and therefore can be used more effectively in the analysis of survival data. We obtain the maximum likelihood estimates of the model parameters by considering censored data and evaluate local influence on the estimates of the parameters by taking different perturbation schemes. Some global-influence measurements are also investigated. Further, for different parameter settings, sample sizes and censoring percentages, various simulations are performed. In addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We demonstrate that our extended regression model is very useful to the analysis of real data and may give more realistic fits than other special regression models
A New Weibull-G Family of Distributions
Statistical analysis of lifetime data is an important topic in reliability engineering, biomedical and social sciences and others. We introduce a new generator based on the Weibull random variable called the new Weibull-G family. We study some of its mathematical properties. Its density function can be symmetrical, left-skewed, right-skewed, bathtub and reversed-J shaped, and has increasing, decreasing, bathtub, upside-down bathtub, J, reversed-J and S shaped hazard rates. Some special models are presented. We obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Renyi entropy, order statistics and reliability. Three useful characterizations based on truncated moments are also proposed for the new family. The method of maximum likelihood is used to estimate the model parameters. We illustrate the importance of the family by means of two applications to real data sets
The Kumaraswamy Marshal-Olkin Family of Distributions
We introduce a new family of continuous distributions called the Kumaraswamy Marshal-Olkin generalized family of distributions. We study some mathematical properties of this family. Its density function is symmetrical, left-skewed, right-skewed and reversed-J shaped, and has constant, increasing, decreasing, upside-down bathtub, bathtub and S-shaped hazard rate. We present some special models and investigate the asymptotics and shapes of the family. We derive a power series for the quantile function and obtain explicit expressions for the moments, generating function, mean deviations, two types of entropies and order statistics. Some useful characterizations of the family are also proposed. The method of maximum likelihood is used to estimate the model parameters. We illustrate the importance of the family by means of two applications to real data sets
Some Extended Classes of Distributions: Characterizations and Properties
Based on a simple relationship between two truncated moments and certain functions of the th order statistic, we characterize some extended classes of distributions recently proposed in the statistical literature, videlicet Beta-G, Gamma-G, Kumaraswamy-G and McDonald-G. Several properties of these extended classes and some special cases are discussed. We compare these classes in terms of goodness-of-fit criteria using some baseline distributions by means of two real data sets
- …