219 research outputs found

    Venezuela, April 2002: Coup or Popular Rebellion? The Myth of a United Venezuela

    Get PDF
    This article assesses the merits of opposing National Assembly reports into the coup against President Chavez of Venezuela in April 2002. Looking at the historical context and the content of the reports, it argues that the two opposing accounts reflect a class division that has always existed in Venezuela but has been officially denied. It concludes that a possible exit from the stalemate could be that the opposition accept the reality of this class division and therefore the Chavez government as a legitimate representative of the popular classes. This, however, is unlikely in the present circumstances

    Northerners and Southerners Differ in Conflict Culture

    Get PDF
    The present study uses regression analysis of existing cross-national data sets to demonstrate that ingroup-outgroup discrimination and intergroup conflict management vary more along the north-south (latitudinal) axis than along the east-west axis of the Earth. Ingroup favoritism, outgroup rejection, political oppression, legal discrimination, and communication bullying are all less prevalent among Northerners than among Southerners in the Northern Hemisphere, but more prevalent among Northerners than among Southerners in the Southern Hemisphere. These findings provide a rich source for further research into how social conflicts are habitually experienced and handled by residents of northern versus southern habitats. A supplementary analysis specifies the extent to which ecological stressors-thermal stress, hydraulic stress, pathogenic stress, and subsistence stress-help explain why there are oppositely sloping north-south gradients of conflict culture above and below the equator. Taken in total, these results demonstrate the importance of considering latitude in forming a deeper understanding of conflict management and negotiation

    Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis

    Get PDF
    Context: Landscape metrics represent powerful tools for quantifying landscape structure, but uncertainties persist around their interpretation. Urban settings add unique considerations, containing habitat structures driven by the surrounding built-up environment. Understanding urban ecosystems, however, should focus on the habitats rather than the matrix. Objectives: We coupled a multivariate approach with landscape metric analysis to overcome existing shortcomings in interpretation. We then explored relationships between landscape characteristics and modelled ecosystem service provision. Methods: We used principal component analysis and cluster analysis to isolate the most effective measures of landscape variability and then grouped habitat patches according to their attributes, independent of the surrounding urban form. We compared results to the modelled provision of three ecosystem services. Seven classes resulting from cluster analysis were separated primarily on patch area, and secondarily by measures of shape complexity and inter-patch distance. Results: When compared to modelled ecosystem services, larger patches up to 10 ha in size consistently stored more carbon per area and supported more pollinators, while exhibiting a greater risk of soil erosion. Smaller, isolated patches showed the opposite, and patches larger than 10 ha exhibited no additional areal benefit. Conclusions: Multivariate landscape metric analysis offers greater confidence and consistency than analysing landscape metrics individually. Independent classification avoids the influence of the urban matrix surrounding habitats of interest, and allows patches to be grouped according to their own attributes. Such a grouping is useful as it may correlate more strongly with the characteristics of landscape structure that directly affect ecosystem function

    Evaluating the spatial uncertainty of future land abandonment in a mountain valley (Vicdessos, Pyrenees-France) : insights form model parameterization and experiments

    Get PDF
    International audienceEuropean mountains are particularly sensitive to climatic disruptions and land use changes. The latter leads to high rates of natural reforestation over the last 50 years. Faced with the challenge of predicting possible impacts on ecosystem services, LUCC models offer new opportunities for land managers to adapt or mitigate their strategies. Assessing the spatial uncertainty of future LUCC is crucial for the defintion of sustainable land use strategies. However, the sources of uncertainty may differ, including the input parameters, the model itself, and the wide range of possible futures. The aim of this paper is to propose a method to assess the probability of occurrence of future LUCC that combines the inherent uncertainty of model parameterization and the ensemble uncertainty of the future based scenarios. For this purpose, we used the Land Change Modeler tool to simulate future LUCC on a study site located in the Pyrenees Mountains (France) and 2 scenarios illustratins 2 land use strategies. The model was parameterized with the same driving factors used for its calibration. The defintion of static vs. dynamic and quantitative vs. qualitative (discretized) driving factors, and their combination resulted in 4 parameterizations. The combination of model outcomes produced maps of spatial uncertainty of future LUCC. This work involves literature to future-based LUCC studies. It goes beyond the uncertainty of simulation models by integrating the unceertainty of the future to provide maps to help decision makers and land managers
    corecore